Epigallocatechin Gallate Inhibits Macaque SEVI-Mediated Enhancement of SIV or SHIV Infection.

J Acquir Immune Defic Syndr

*School of Basic Medical Sciences/State Key Laboratory of Virology, Wuhan University, Wuhan, China; †Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA; and ‡School of Public Health, Guangxi Medical University, Nanning, China.

Published: June 2017

Background: Human semen contains a factor that can enhance HIV infection up to 10-fold in cultures. This factor is termed semen-derived enhancer of virus infection (SEVI) and is composed of proteolytic fragments (PAP248-286) from prostatic acid phosphatase in semen. In this study, we examined whether macaque SEVI can facilitate simian immunodeficiency virus (SIV) or chimeric simian/human immunodeficiency virus (SHIV) infection. We also studied the effect of epigallocatechin gallate (EGCG) on macaque SEVI-mediated SIV or SHIV enhancement.

Methods: SIV or SHIV was mixed with different concentrations of macaque SEVI in the presence or absence of EGCG. The mixture was added to cultures of TZM-bl cells or macaque PBMCs. The effect of EGCG on macaque SEVI was measured by Congo-red staining assay and thioflavin T (ThT) fluorescence assay and was visualized by a transmission electron microscope.

Results: We identified that there is one amino acid difference at the site of 277 between human PAP248-286 and macaque PAP248-286. Macaque SEVI significantly enhanced SIV or SHIV infection of TZM-bl cells and macaque PBMCs. EGCG could block macaque SEVI-mediated enhancement of SIV or SHIV infection. Mechanistically, EGCG could degrade the formation of macaque SEVI amyloid fibrils that facilitates HIV attachment to the target cells.

Conclusions: The finding that macaque SEVI could enhance SIV or SHIV infection indicates the possibility to use the macaque SEVI in vivo studies with the macaque models. In addition, future studies are necessary to examine whether EGCG can be used as an effective microbicide for preventing SIV or SHIV mucosal transmission.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5429200PMC
http://dx.doi.org/10.1097/QAI.0000000000001361DOI Listing

Publication Analysis

Top Keywords

siv shiv
28
macaque sevi
28
shiv infection
20
macaque
14
macaque sevi-mediated
12
epigallocatechin gallate
8
sevi-mediated enhancement
8
siv
8
enhancement siv
8
shiv
8

Similar Publications

Purpose Of Review: Natural killer (NK) cells are integral components of the innate immune system, serving a vital function in eliminating virally infected cells. This review highlights the significance of CXCR5+ NK cells in the context of chronic HIV/SIV infection and viral control.

Recent Findings: Controlled HIV/SHIV infection results in a substantial increase in the population of CXCR5+ NK cells within the B-cell follicles of secondary lymphoid organs (SLOs).

View Article and Find Full Text PDF

eCD4-immunoglobulin (Ig) is an HIV entry inhibitor that mimics the engagement of both CD4 and CCR5 with the HIV envelope (Env) protein, a property that imbues it with remarkable potency and breadth. However, env is exceptionally genetically malleable and can evolve to escape a wide variety of entry inhibitors. Here we document the evolution of partial eCD4-Ig resistance in SHIV-AD8-infected rhesus macaques (RMs) treated with adeno-associated virus vectors encoding eCD4-Ig.

View Article and Find Full Text PDF

SHIV remission in macaques with early treatment initiation and ultra long-lasting antiviral activity.

Nat Commun

December 2024

Laboratory Branch, Division of HIV Prevention, National Center for HIV, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA.

Studies in SIV-infected macaques show that the virus reservoir is particularly refractory to conventional suppressive antiretroviral therapy (ART). We posit that optimized ART regimens designed to have robust penetration in tissue reservoirs and long-lasting antiviral activity may be advantageous for HIV or SIV remission. Here we treat macaques infected with RT-SHIV with oral emtricitabine/tenofovir alafenamide and long-acting cabotegravir/rilpivirine without (n = 4) or with (n = 4) the immune activator vesatolimod after the initial onset of viremia.

View Article and Find Full Text PDF

Vaccine induced mucosal and systemic memory NK/ILCs elicit decreased risk of SIV/SHIV acquisition.

Front Immunol

September 2024

Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States.

SIV and HIV-based envelope V1-deleted (ΔV1) vaccines, delivered systemically by the DNA/ALVAC/gp120 platform, decrease the risk of mucosal SIV or SHIV acquisition more effectively than V1-replete vaccines. Here we investigated the induction of mucosal and systemic memory-like NK cells as well as antigen-reactive ILC response by DNA/ALVAC/gp120-based vaccination and their role against SIV/SHIV infection. ΔV1 HIV vaccination elicited a higher level of mucosal TNF-α and CD107 memory-like NK cells than V1-replete vaccination, suggesting immunogen dependence.

View Article and Find Full Text PDF

Interferon-lambda receptor 1 (IFNLR1) is the key to interferon-lambda's biological activities. Rhesus macaques (Macaca mulatta) are supposedly more suitable for translational studies on interferon lambda-associated human diseases, yet little is known about their IFNLR1 (mmuIFNLR1). In this study, we cloned the coding sequence of mmuIFNLR1, examined its variants, and determined the distribution of mmuIFNLR1 mRNA and immunoreactivity in the buccal mucosa and arm skin of normal and immunodeficiency virus (SHIV/SIV) infected rhesus macaques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!