A diffusion measurement in the short-time surface-to-volume ratio (S/V) limit (Mitra et al., Phys Rev Lett. 1992;68:3555) can disentangle the free diffusion coefficient from geometric restrictions to diffusion. Biophysical parameters, such as the S/V of tissue membranes, can be used to estimate microscopic length scales non-invasively. However, due to gradient strength limitations on clinical MRI scanners, pulsed gradient spin echo (PGSE) measurements are impractical for probing the S/V limit. To achieve this limit on clinical systems, an oscillating gradient spin echo (OGSE) sequence was developed. Two phantoms containing 10 fiber bundles, each consisting of impermeable aligned fibers with different packing densities, were constructed to achieve a range of S/V values. The frequency-dependent diffusion coefficient, D(ω), was measured in each fiber bundle using OGSE with different gradient waveforms (cosine, stretched cosine, and trapezoidal), while D(t) was measured from PGSE and stimulated-echo measurements. The S/V values derived from the universal high-frequency behavior of D(ω) were compared against those derived from quantitative proton density measurements using single spin echo (SE) with varying echo times, and from magnetic resonance fingerprinting (MRF). S/V estimates derived from different OGSE waveforms were similar and demonstrated excellent correlation with both SE- and MRF-derived S/V measures (ρ ≥ 0.99). Furthermore, there was a smoother transition between OGSE frequency f and PGSE diffusion time when using teffS/V=9/64f, rather than the commonly used t = 1/(4f), validating the specific frequency/diffusion time conversion for this regime. Our well-characterized fiber phantom can be used for the calibration of OGSE and diffusion modeling techniques, as the S/V ratio can be measured independently using other MR modalities. Moreover, our calibration experiment offers an exciting perspective of mapping tissue S/V on clinical systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5501714 | PMC |
http://dx.doi.org/10.1002/nbm.3708 | DOI Listing |
Med Phys
January 2025
Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
Background: Diffusion-weighted (DW) turbo-spin-echo (TSE) imaging offers improved geometric fidelity compared to single-shot echo-planar-imaging (EPI). However, it suffers from low signal-to-noise ratio (SNR) and prolonged acquisition times, thereby restricting its applications in diagnosis and MRI-guided radiotherapy (MRgRT).
Purpose: To develop a joint k-b space reconstruction algorithm for concurrent reconstruction of DW-TSE images and the apparent diffusion coefficient (ADC) map with enhanced image quality and more accurate quantitative measurements.
AJNR Am J Neuroradiol
January 2025
Department of Radiology (K.L.R, L.V.R., A.F.J.), Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
Background And Purpose: This study investigates the practicality and utility of the "outline sign," which refers to the thin curvilinear hyperenhancing line that may be seen along the margin of a meningioma on a spin-echo postcontrast T1-weighted image. For cases in which the differential diagnosis may include other tumors, visualization of the outline sign may help to increase the diagnostic confidence for a meningioma. Therefore, in the temporal bone region such as the cerebellopontine angle or jugular foramen, where differential considerations may include a schwannoma or paraganglioma, we additionally investigated whether the outline sign may be observed in these nonmeningioma lesions.
View Article and Find Full Text PDFJ Magn Reson Imaging
January 2025
Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
Background: Bladder injury during cesarean delivery (CD) in pregnant women with severe placenta accreta spectrum (PAS) disorders mostly occurs in the dissection of vesico-uterine space. Placental MRI may help to assess the risk of bladder injury preoperatively.
Purpose: To identify the high-risk MRI signs of bladder injury during CD in women with severe PAS.
Korean J Radiol
January 2025
Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea.
Objective: To prospectively evaluate the effect of accelerated deep learning-based reconstruction (Accel-DL) on improving brain magnetic resonance imaging (MRI) quality and reducing scan time compared to that in conventional MRI.
Materials And Methods: This study included 150 participants (51 male; mean age 57.3 ± 16.
Korean J Radiol
January 2025
Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
Objective: The aim of this study was to compare image quality features and lesion characteristics between a faster deep learning (DL) reconstructed T2-weighted (T2-w) fast spin-echo (FSE) Dixon sequence with super-resolution (T2) and a conventional T2-w FSE Dixon sequence (T2) for breast magnetic resonance imaging (MRI).
Materials And Methods: This prospective study was conducted between November 2022 and April 2023 using a 3T scanner. Both T2 and T2 sequences were acquired for each patient.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!