The number of managed honey bee colonies has considerably decreased in many developed countries in recent years and ectoparasitic mites are considered as major threats to honey bee colonies and health. However, their general biology remains poorly understood. We sequenced the genome of Tropilaelaps mercedesae, the prevalent ectoparasitic mite infesting honey bees in Asia, and predicted 15 190 protein-coding genes that were well supported by the mite transcriptomes and proteomic data. Although amino acid substitutions have been accelerated within the conserved core genes of two mites, T. mercedesae and Metaseiulus occidentalis, T. mercedesae has undergone the least gene family expansion and contraction between the seven arthropods we tested. The number of sensory system genes has been dramatically reduced, but T. mercedesae contains all gene sets required to detoxify xenobiotics. T. mercedesae is closely associated with a symbiotic bacterium (Rickettsiella grylli-like) and Deformed Wing Virus, the most prevalent honey bee virus. T. mercedesae has a very specialized life history and habitat as the ectoparasitic mite strictly depends on the honey bee inside a stable colony. Thus, comparison of the genome and transcriptome sequences with those of a tick and free-living mites has revealed the specific features of the genome shaped by interaction with the honey bee and colony environment. Genome and transcriptome sequences of T. mercedesae, as well as Varroa destructor (another globally prevalent ectoparasitic mite of honey bee), not only provide insights into the mite biology, but may also help to develop measures to control the most serious pests of the honey bee.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5467014 | PMC |
http://dx.doi.org/10.1093/gigascience/gix008 | DOI Listing |
J Econ Entomol
December 2024
State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.
Bombus terrestris, an important eusocial insect, plays a vital role in providing pollination services for both wild plants and greenhouse crops. For the development of the colonies, the workers must leave the hives to collect nectar and pollen. However, limited findings about the foraging behavior of B.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641 003, India.
The present study focused on the impact of weather parameters over the foraging efficiency and pollination potential of stingless bees, Tetragonula iridipennis in tomato ecosystem which was located in Coimbatore district, Tamil Nadu, India. The maximum foraging activity (outgoing bees - 24.56/5 min, Pollen foragers - 8.
View Article and Find Full Text PDFNeotrop Entomol
December 2024
Instituto de Biologia, Univ Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil.
Pollination service is a global issue with significant impacts on ecosystem maintenance and food production. The decline of bees has highlighted the importance of public awareness and conservation policies to ensure food security and the sustainable use of such services. In this study, we investigated the awareness about bee diversity and pollination services among young students in a medium-sized city in the Cerrado region, the main agricultural frontier in Central Brazil.
View Article and Find Full Text PDFSci Rep
December 2024
ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, Maharashtra, 410 505, India.
Tetragonula iridipennis Smith, commonly known as the stingless bee or 'dammer bee', is a key native species that pollinates a wide variety of horticultural crops, including onions, in India. Climate change significantly affects species distribution and habitat suitability. This study utilized Maximum Entropy Modeling (MaxEnt) to predict the current and future distribution of T.
View Article and Find Full Text PDFMol Ecol
December 2024
GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France.
Honeybees, Apis mellifera, have experienced the full impacts of globalisation, including the recent invasion by the parasitic mite Varroa destructor, now one of the main causes of colony losses worldwide. The strong selection pressure it exerts has led some colonies to develop defence strategies conferring some degree of resistance to the parasite. Assuming these traits are partly heritable, selective breeding of naturally resistant bees could be a sustainable strategy for fighting infestations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!