A critical role of spinal Shank2 proteins in NMDA-induced pain hypersensitivity.

Mol Pain

1 Department of Brain and Cognitive Sciences, College of Natural Sciences, Pain Cognitive Function Research Center, Dental Research Institute, Seoul National University, Seoul, Republic of Korea.

Published: January 2017

Background Self-injurious behaviors (SIBs) are devastating traits in autism spectrum disorder (ASD). Although deficits in pain sensation might be one of the contributing factors underlying the development of SIBs, the mechanisms have yet to be addressed. Recently, the Shank2 synaptic protein has been considered to be a key component in ASD, and mutations of SHANK2 gene induce the dysfunction of N-methyl-D-aspartate (NMDA) receptors, suggesting a link between Shank2 and NMDA receptors in ASD. Given that spinal NMDA receptors play a pivotal role in pain hypersensitivity, we investigated the possible role of Shank2 in nociceptive hypersensitivity by examining changes in spontaneous pain following intrathecal NMDA injection in S hank2-/- ( Shank2 knock-out, KO) mice. Results Intrathecal NMDA injection evoked spontaneous nociceptive behaviors. These NMDA-induced nociceptive responses were significantly reduced in Shank2 KO mice. We also observed a significant decrease of NMDA currents in the spinal dorsal horn of Shank2 KO mice. Subsequently, we examined whether mitogen-activated protein kinase or AKT signaling is involved in this reduced pain behavior in Shank2 KO mice because the NMDA receptor is closely related to these signaling molecules. Western blotting and immunohistochemistry revealed that spinally administered NMDA increased the expression of a phosphorylated form of extracellular signal-regulated kinase (p-ERK) which was significantly reduced in Shank2 KO mice. However, p38, JNK, or AKT were not changed by NMDA administration. The ERK inhibitor, PD98059, decreased NMDA-induced spontaneous pain behaviors in a dose-dependent manner in wild-type mice. Moreover, it was found that the NMDA-induced increase in p-ERK was primarily colocalized with Shank2 proteins in the spinal cord dorsal horn. Conclusion Shank2 protein is involved in spinal NMDA receptor-mediated pain, and mutations of Shank2 may suppress NMDA-ERK signaling in spinal pain transmission. This study provides new clues into the mechanisms underlying pain deficits associated with SIB and deserves further study in patients with ASD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5302174PMC
http://dx.doi.org/10.1177/1744806916688902DOI Listing

Publication Analysis

Top Keywords

shank2 mice
16
shank2
13
nmda receptors
12
nmda
10
pain
9
shank2 proteins
8
pain hypersensitivity
8
mutations shank2
8
spinal nmda
8
spontaneous pain
8

Similar Publications

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA.

Background: Sleep disturbances are associated with the pathogenesis of neurodegenerative diseases including Alzheimer's disease (AD) and primary tauopathies. We have previously shown that APOE4, the strongest genetic risk factor for AD, directly influences the severity of key pathological hallmarks of neurodegeneration including tau deposition, microglial reactivity and brain atrophy. Sleep loss influences tau accumulation and microglial reactivity in both mice and humans, suggesting that sleep loss may contribute to neurodegeneration not only by influencing protein aggregation, but also through an immune mechanism.

View Article and Find Full Text PDF
Article Synopsis
  • Protocadherins, especially Protocadherin 9 (PCDH9), are important for cell-cell interactions and have been linked to Autism Spectrum Disorder (ASD) and Major Depressive Disorder (MDD).
  • Knockout (KO) of PCDH9 in mice leads to abnormal neuronal development, characterized by larger presynaptic terminals and increased excitatory synapse activity in the hippocampus.
  • The findings suggest that PCDH9 plays a critical role in regulating excitatory synapse morphology and function, influencing glutamatergic transmission and potentially contributing to neurodevelopmental disorders.
View Article and Find Full Text PDF

Background: Current phenotyping approaches for murine autism models often focus on one selected behavioral feature, making the translation onto a spectrum of autistic characteristics in humans challenging. Furthermore, sex and environmental factors are rarely considered. Here, we aimed to capture the full spectrum of behavioral manifestations in 3 autism mouse models to develop a "behavioral fingerprint" that takes environmental and sex influences under consideration.

View Article and Find Full Text PDF

Precision of transcription is critical because transcriptional dysregulation is disease causing. Traditional methods of transcriptional profiling are inadequate to elucidate the full spectrum of the transcriptome, particularly for longer and less abundant mRNAs. SHANK3 is one of the most common autism causative genes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!