Enhanced proton magnetic resonance imaging of experimental mammary tumors.

Magn Reson Med

Department of Radiology, Mount Sinai Medical Center, Miami Beach, Florida 33140.

Published: January 1988

The proton magnetic resonance imaging contrast of experimental mammary tumors in rats has been dramatically improved. The technique developed combines T2 weighting and chemical-shift imaging in order to suppress the thoracic wall, muscle, and subcutaneous fat contributions to the image. The technique is demonstrated using the R3230AC mammary adenocarcinoma in F344 rats at 4.7 T.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mrm.1910060114DOI Listing

Publication Analysis

Top Keywords

proton magnetic
8
magnetic resonance
8
resonance imaging
8
experimental mammary
8
mammary tumors
8
enhanced proton
4
imaging experimental
4
tumors proton
4
imaging contrast
4
contrast experimental
4

Similar Publications

Highly Efficient Analysis on Biomass Carbohydrate Mixtures by DREAMTIME NMR Spectroscopy.

Anal Chem

December 2024

Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Siming South Road 422, Xiamen 361005, China.

Proton (H) NMR spectroscopy presents a powerful tool for biomass mixture studies by revealing the involved chemical compounds with identified ingredients and molecular structures. However, conventional H NMR generally suffers from spectral congestion when measuring biomass mixtures, particularly biomass carbohydrate samples, that contain various physically and chemically similar compounds. In this study, a targeted detection NMR approach, DREAMTIME, is exploited for studying biomass carbohydrate mixtures by spectroscopically targeting the desired compounds in separate 1D NMR spectra.

View Article and Find Full Text PDF

Background: In magnetic resonance imaging (MRI) segmentation research, the choice of sequence influences the segmentation accuracy. This study introduces a method to compare sequences. By aligning sequences with specific segmentation objectives, we provide an example of a comparative analysis of various sequences for knee images.

View Article and Find Full Text PDF

Intracranial hemorrhage associated with primary or metastatic brain tumors is a critical condition that requires urgent intervention, often through open surgery. Nevertheless, surgical interventions may not always be feasible due to two main reasons: (1) extensive hemorrhage can obscure the underlying tumor mass, limiting radiological assessment; and (2) intracranial hemorrhage may occasionally present as the first symptom of a brain tumor without prior knowledge of its existence. The current review of case studies suggests that advanced radiological imaging techniques can improve diagnostic power for tumoral hemorrhage.

View Article and Find Full Text PDF

Effects of Acute Stress on Metabolic Interactions Related to the Tricarboxylic Acid (TCA) Cycle in the Left Hippocampus of Mice.

Metabolites

December 2024

Department of Radiation Convergence Engineering, College of Software and Digital Healthcare Convergence, Yonsei University, 1, Yeonsedae-gil, Heungeop-myeon, Wonju 26493, Republic of Korea.

Background/objectives: The acute stress response affects brain metabolites closely linked to the tricarboxylic acid (TCA) cycle. This response involves time-dependent changes in hormones and neurotransmitters, which contribute to resilience and the ability to adapt to acute stress while maintaining homeostasis. This physiological mechanism of metabolic dynamics, combined with time-series analysis, has prompted the development of new methods to observe the relationship between TCA cycle-related brain metabolites.

View Article and Find Full Text PDF

An imbalance in the body's pH or temperature may modify the immune response and result in ailments such as autoimmune disorders, infectious diseases, cancer, or diabetes. Dual pH- and thermo-responsive carriers are being evaluated as advanced drug delivery microdevices designed to release pharmaceuticals in response to external or internal stimuli. A novel drug delivery system formulated as hydrogel was developed by combining a pH-sensitive polymer (the "biosensor") with a thermosensitive polymer (the delivery component).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!