Tolvaptan, a selective vasopressin V2 receptor antagonist, is a new generation diuretic. Its clinical efficacy is in principle due to impaired vasopressin-regulated water reabsorption via aquaporin-2 (AQP2). Nevertheless, no direct in vitro evidence that tolvaptan prevents AQP2-mediated water transport, nor that this pathway is targeted in vivo in patients with syndrome of inappropriate antidiuresis (SIAD) has been provided. The effects of tolvaptan on the vasopressin-cAMP/PKA signalling cascade were investigated in MDCK cells expressing endogenous V2R and in mouse kidney. In MDCK, tolvaptan prevented dDAVP-induced increase in ser256-AQP2 and osmotic water permeability. A similar effect on ser256-AQP2 was found in V1aR -/- mice, thus confirming the V2R selectively. Of note, calcium calibration in MDCK showed that tolvaptan per se caused calcium mobilization from the endoplasmic reticulum resulting in a significant increase in basal intracellular calcium. This effect was only observed in cells expressing the V2R, indicating that it requires the tolvaptan-V2R interaction. Consistent with this finding, tolvaptan partially reduced the increase in ser256-AQP2 and the water permeability in response to forskolin, a direct activator of adenylyl cyclase (AC), suggesting that the increase in intracellular calcium is associated with an inhibition of the calcium-inhibitable AC type VI. Furthermore, tolvaptan treatment reduced AQP2 excretion in two SIAD patients and normalized plasma sodium concentration. These data represent the first detailed demonstration of the central role of AQP2 blockade in the aquaretic effect of tolvaptan and underscore a novel effect in raising intracellular calcium that can be of significant clinical relevance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5571526PMC
http://dx.doi.org/10.1111/jcmm.13098DOI Listing

Publication Analysis

Top Keywords

intracellular calcium
12
tolvaptan
9
receptor antagonist
8
cells expressing
8
mdck tolvaptan
8
increase ser256-aqp2
8
water permeability
8
calcium
6
antagonist tolvaptan
4
tolvaptan raises
4

Similar Publications

Metabolically stable apelin analogs: development and functional role in water balance and cardiovascular function.

Clin Sci (Lond)

January 2025

Center for Interdisciplinary Research in Biology, College de France, Institut National de la Santé et de la Recherche Médicale, Paris, France.

Apelin, a (neuro) vasoactive peptide, plays a prominent role in controlling water balance and cardiovascular functions. Apelin and its receptor co-localize with vasopressin in magnocellular vasopressinergic neurons. Apelin receptors (Apelin-Rs) are also expressed in the collecting ducts of the kidney, where vasopressin type 2 receptors are also present.

View Article and Find Full Text PDF

The zona glomerulosa (ZG) synthesizes the mineralocorticoid aldosterone. The primary role of aldosterone is the maintenance of volume and electrolyte homeostasis. Aldosterone synthesis is primarily regulated via tightly controlled oscillations in intracellular calcium levels in response to stimulation.

View Article and Find Full Text PDF

Mitochondrial quality control is crucial for the homeostasis of the mitochondrial network. The balance between mitophagy and biogenesis is needed to reduce cerebral ischemia-induced cell death. Ischemic preconditioning (IPC) represents an adaptation mechanism of CNS that increases tolerance to lethal cerebral ischemia.

View Article and Find Full Text PDF

Monitoring of inflammatory preterm responses via myometrial cell based multimodal electrophysiological and optical biosensing platform.

Biosens Bioelectron

January 2025

Department of Chemistry, ZJU-Hangzhou Global Scientific and Technological Innovation Center, School of Medicine, Zhejiang University, Hangzhou, 310058, China; General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, 310052, China. Electronic address:

Preterm birth (PTB) remains a leading cause of neonatal morbidity and mortality, with inflammation-induced PTB posing a significant challenge due to its complex pathophysiology. To address this, we developed an in vitro platform utilizing hTERT-immortalized human myometrial (hTERT-HM) cells integrated with a multielectrode array (MEA) biosensing system and optical calcium imaging. Compared to primary uterine myometrial cells, hTERT-HM cells exhibit superior reproducibility, high scalability, and convenient manipulation, facilitating the consistent and large-scale investigations.

View Article and Find Full Text PDF

The NMDAR-BK channelosomes as regulators of synaptic plasticity.

Biochem Soc Trans

January 2025

Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud-sección Medicina, Universidad de La Laguna, Tenerife, ES-38071, Spain.

Large conductance voltage- and calcium-activated potassium channels (BK channels) are extensively found throughout the central nervous system and play a crucial role in various neuronal functions. These channels are activated by a combination of cell membrane depolarisation and an increase in intracellular calcium concentration, provided by calcium sources located close to BK. In 2001, Isaacson and Murphy first demonstrated the coupling of BK channels with N-methyl-D-aspartate receptors (NMDAR) in olfactory bulb neurons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!