Although individual G-protein-coupled receptors (GPCRs) are known to activate one or more G proteins, the GPCR-G-protein interaction is viewed as a bimolecular event involving the formation of a ternary ligand-GPCR-G-protein complex. Here, we present evidence that individual GPCR-G-protein interactions can reinforce each other to enhance signaling through canonical downstream second messengers, a phenomenon we term "GPCR priming." Specifically, we find that the presence of noncognate Gq protein enhances cAMP stimulated by two Gs-coupled receptors, β2-adrenergic receptor (β2-AR) and D dopamine receptor (D-R). Reciprocally, Gs enhances IP through vasopressin receptor (V-R) but not α1 adrenergic receptor (α1-AR), suggesting that GPCR priming is a receptor-specific phenomenon. The C terminus of either the Gαs or Gαq subunit is sufficient to enhance Gα subunit activation and cAMP levels. Interaction of Gαs or Gαq C termini with the GPCR increases signaling potency, suggesting an altered GPCR conformation as the underlying basis for GPCR priming. We propose three parallel mechanisms involving () sequential G-protein interactions at the cognate site, () G-protein interactions at distinct allosteric and cognate sites on the GPCR, and () asymmetric GPCR dimers. GPCR priming suggests another layer of regulation in the classic GPCR ternary-complex model, with broad implications for the multiplicity inherent in signaling networks.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5389285 | PMC |
http://dx.doi.org/10.1073/pnas.1617232114 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!