Application of bacterial reverse mutation assay for detection of non-genotoxic carcinogens.

Toxicol Mech Methods

a Drug Safety Assessment, Novel Drug Discovery & Development , Lupin Limited (Research Park) , Taluka-Mulshi , Pune , India.

Published: June 2017

Non-genotoxic carcinogens may play a significant role in development of cancer. Currently short-term assays for mutagenicity classify genotoxic carcinogens and lack the abilities to detect epigenetic carcinogens. The need to develop an endpoint always remains to recognize potentially carcinogenic agents employing rapid and practical bioassays. For this, the present study utilized TA98 and TA1537 tester strains of Salmonella typhimurium to evaluate four non-genotoxic carcinogenic agents (Coumarin, β-Myrcene, Bis(2-ethylhexyl) phthalate and trans-anethole). These chemicals were tested individually and in combination with promutagens 2-aminoanthracene (2AA) and benzo(a)pyrene (BP) in presence of metabolic activation system (S9) by plate incorporation method. Exposure to all four test chemicals revealed marked increase of revertant colonies in promutagen combined groups as compared to promutagens alone. However significantly greater fold responses were observed with 2AA combination groups (Coumarin +2AA, β-Myrcene +2AA, Bis(2-ethylhexyl) phthalate +2AA and trans-anethole +2AA) with TA98 strain as compared with TA1537, which seems to have enhanced the mutagenic response of 2AA in metabolically activated conditions. It is concluded that out of both tester strains TA98 strain of Salmonella typhimurium has the potential to detect non-genotoxic carcinogens when combined with potent promutgens either by inhibiting or modulating activities of liver microsomal enzymes biochemically which may indirectly contribute to neoplastic alterations. Further this simple, short-term alternative assay may provide rapid information during extrapolative toxicology for differentiating genotoxic and non-genotoxic carcinogens.

Download full-text PDF

Source
http://dx.doi.org/10.1080/15376516.2017.1300616DOI Listing

Publication Analysis

Top Keywords

non-genotoxic carcinogens
16
carcinogenic agents
8
tester strains
8
salmonella typhimurium
8
bis2-ethylhexyl phthalate
8
ta98 strain
8
carcinogens
6
non-genotoxic
5
application bacterial
4
bacterial reverse
4

Similar Publications

L. is a plant with various claims of ethnobotanical use, primarily for inflammatory diseases. Chemical studies have already isolated different types of terpenes from the species, and studies have established its pharmacological potential.

View Article and Find Full Text PDF

The World Health Organization has classified air pollution as a carcinogen, and polycyclic aromatic hydrocarbons (PAHs) are major components of air particulates of carcinogenic concern. Thus far, most studies focused on genotoxic high molecular weight PAHs; however, recent studies indicate potential carcinogenicity of the non-genotoxic lower molecular weight PAHs (LMW PAHs) that are found in indoor and outdoor air pollution as well as secondhand cigarette smoke. We hypothesize that LMW PAHs contribute to the promotion stage of cancer when combined with benzo[]pyrene (B[]P), a legacy PAH.

View Article and Find Full Text PDF
Article Synopsis
  • Gene expression biomarkers can help identify both genotoxic and non-genotoxic carcinogens, which could reduce the need for animal testing.
  • In August 2022, a workshop reviewed current methods for using transcriptomic profiling to detect genotoxic chemicals, examining 1341 papers to find reliable biomarkers.
  • The analysis identified two promising in vivo biomarkers and three in vitro biomarkers that show over 92% predictive accuracy and can be adapted for various testing conditions, with support from workshop participants for their regulatory adoption.
View Article and Find Full Text PDF

Editorial: Reducing animal use in carcinogenicity testing.

Front Toxicol

December 2024

Research and Regulatory Affairs Department, Physicians Committee for Responsible Medicine, Washington, DC, United States.

View Article and Find Full Text PDF

Background: Previously, Japanese Environmental Mutagen and Genome Society/Mammalian Mutagenicity Study Group/Toxicogenomics Study Group (JEMS/MMS toxicogenomic study group) proposed 12 genotoxic marker genes (Aen, Bax, Btg2, Ccnf, Ccng1, Cdkn1a, Gdf15, Lrp1, Mbd1, Phlda3, Plk2, and Tubb4b) to discriminate genotoxic hepatocarcinogens (GTHCs) from non-genotoxic hepatocarcinogens (NGTHCs) and non-genotoxic non-hepatocarcinogens (NGTNHCs) in mouse and rat liver using qPCR and RNA-Seq and confirmed in public rat toxicogenomics data, Open TG-GATEs, by principal component analysis (PCA). On the other hand, the U.S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!