A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Multi-task transfer learning for in-hospital-death prediction of ICU patients. | LitMetric

Multi-Task Transfer Learning (MTTL) is an efficient approach for learning from inter-related tasks with small sample size and imbalanced class distribution. Since the intensive care unit (ICU) data set (publicly available in Physionet) has subjects from four different ICU types, we hypothesize that there is an underlying relatedness amongst various ICU types. Therefore, this study aims to explore MTTL model for in-hospital mortality prediction of ICU patients. We used single-task learning (STL) approach on the augmented data as well as individual ICU data and compared the performance with the proposed MTTL model. As a performance measurement metrics, we used sensitivity (Sens), positive predictivity (+Pred), and Score. MTTL with class balancing showed the best performance with score of 0.78, 0.73, o.52 and 0.63 for ICU type 1 (Coronary care unit), 2 (Cardiac surgery unit), 3 (Medical ICU) and 4 (Surgical ICU) respectively. In contrast the maximum score obtained using STL approach was 0.40 for ICU type 1 & 2. These results indicates that the performance of in-hospital mortality can be improved using ICU type information and by balancing the `non-survivor' class. The findings of the study may be useful for quantifying the quality of ICU care, managing ICU resources and selecting appropriate interventions.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC.2016.7591438DOI Listing

Publication Analysis

Top Keywords

icu
13
icu type
12
multi-task transfer
8
transfer learning
8
prediction icu
8
icu patients
8
care unit
8
icu data
8
icu types
8
mttl model
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!