Assessment of arterio-venous fistula (AVF) blood flow (ABF) is vital in hemodialysis (HD) patients. Currently, no non-invasive and contact-free technique is available to accurately measure ABF in routine clinical practice. In this study, we developed a novel approach using video image processing (VIP) to measure the change in optic flow in the skin. We the tested the hypothesis that the change in optical flow, expressed as the change in pixels between consecutive frames, is related to ABF. We recorded AVF videos in 40 HD patients using a digital camera and processed them by VIP technique. We then compared the actual ABF as measured by routine online clearance (ABFOLC) and the amplitude (AMP) of optical flow. Technical and procedural errors rendered VIP invalid in 13 patients. In the remaining 27 patients the optical flow AMP was significantly lower in patients with low (<;900 ml/min) ABFOLC compared to patients with normal (≥900 ml/min) ABFOLC (AMP 3.4±1*10 vs 5.2±1.4 *10 [pixels], p<;0.01). In these 27 patients AMP correlated with ABFOLC (R=0.71, p<;0.0001). While more extensive research is necessary, these preliminary results indicate the potential usefulness of the VIP technique to identify low ABF.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC.2016.7590676 | DOI Listing |
Nat Commun
December 2024
State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, China.
Imaging flow cytometry allows image-activated cell sorting (IACS) with enhanced feature dimensions in cellular morphology, structure, and composition. However, existing IACS frameworks suffer from the challenges of 3D information loss and processing latency dilemma in real-time sorting operation. Herein, we establish a neuromorphic-enabled video-activated cell sorter (NEVACS) framework, designed to achieve high-dimensional spatiotemporal characterization content alongside high-throughput sorting of particles in wide field of view.
View Article and Find Full Text PDFRev Sci Instrum
December 2024
X-ray Astrophysics Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, USA.
This paper presents progress made toward the overarching goal to adapt single-photon-counting microcalorimeters to magnetic fusion energy research and demonstrate the value of such measurements for fusion. Microcalorimeter spectrometers combine the best characteristics of x-ray instrumentation currently available on fusion devices: high spectral resolution similar to an x-ray crystal spectrometer and broad spectral coverage sufficient to measure impurity species from Be to W. As a proof-of-principle experiment, a NASA-built x-ray microcalorimeter spectrometer has been installed on the Madison Symmetric Torus (MST) at the Wisconsin Plasma Physics Laboratory.
View Article and Find Full Text PDFBMC Oral Health
December 2024
Department of Biomaterials Science and Turku Clinical Biomaterial Center -TCBC, Institute of Dentistry, University of Turku, Turku, Finland.
Background: Short fiber-reinforced composites (SFRCs) are restorative materials for large cavities claimed to effectively resist crack propagation. This study aimed to compare the mechanical properties and physical characteristics of five commercially available SFRCS (Alert, Fibrafill Flow, Fibrafill Dentin, everX Flow, and everX Posterior) against a conventional particulate-filled composite (PFC, Essentia Universal).
Methods: The following characteristics were evaluated in accordance with ISO standards: flexural strength and modulus and fracture toughness.
Int J Biol Macromol
December 2024
Biotransformation and Organic Biocatalysis Research Group, Department of Exact Sciences, Santa Cruz State University, 45654-370 Ilhéus, Brazil. Electronic address:
This study explored the synergistic combination of silver nanoparticles (AgNPs), eucalyptus-derived nanofibrillated cellulose (NFC) and cassava starch to develop bionanocomposites with advanced properties suitable for sustainable and antifungal packaging applications. The influence of AgNPs synthesized through a green method using cocoa bean shell combined with varying concentrations of NFC were investigated. Morphological (scanning electron microscopy and atomic force microscopy), optical (L*, C*, °hue, and opacity), chemical (Fourier transform infrared spectroscopy), mechanical (puncture force, tensile strength, and Young's modulus), rheological (flow curve and frequency sweeps, strain, and stress), barrier, and hydrophilicity properties (water vapor permeability, solubility, wettability, and contact angle), as well as the antifungal effect against pathogens (Botrytis cinerea, Penicillium expansum, Colletotrichum musae, and Fusarium semitectum), were analyzed.
View Article and Find Full Text PDFSci Rep
December 2024
Retina Ward, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran.
We compared chorioretinal microvascular of Slow Coronary Flow Phenomenon (SCFP) patients using Optical Coherence Tomography Angiography (OCTA) to healthy controls. We recruited 21 patients from September 2023 until January 2024 from two referral centers. We enrolled 21 age-sex-matched controls retrospectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!