Depression and anxiety are the most common psychiatric disorders, representing a major public health concern. Dysregulation of oxidative and inflammatory systems may be associated with psychiatric disorders, such as depression and anxiety. Due to the need to find appropriate animal models to the understanding of such disorders, we queried whether 2 BXD recombinant inbred (RI) mice strains (BXD21/TyJ RI and BXD84/RwwJ RI mice) and C57BL/6 wild-type mice show differential performance in depression and anxiety related behaviors and biomarkers. Specifically, we assessed social preference, elevated plus maze, forced swim, and Von Frey tests at 3-4 months-of-age, as well as activation of cytokines and antioxidant mRNA levels in the cortex at 7 months-of-age. We report that (1) the BXD84/RwwJ RI strain exhibits anxiety disorder and social avoidance-like behavior (2) BXD21/TyJ RI strain shows a resistance to depression illness, and (3) sex-dependent cytokine profiles and allodynia with elevated inflammatory activity were inherent to male BXD21/TyJ RI mice. In conclusion, we provide novel data in favor of the use of BXD recombinant inbred mice to further understand anxiety and depression disorders.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5985819 | PMC |
http://dx.doi.org/10.1016/j.psyneuen.2017.03.006 | DOI Listing |
Sci Rep
December 2024
Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Drug addiction is a multifactorial syndrome in which genetic predispositions and exposure to environmental stressors constitute major risk factors for the early onset, escalation, and relapse of addictive behaviors. While it is well known that stress plays a key role in drug addiction, the genetic factors that make certain individuals particularly sensitive to stress and, thereby, more vulnerable to becoming addicted are unknown. In an effort to test a complex set of gene x environment interactions-specifically gene x chronic stress-here we leveraged a systems genetics resource: BXD recombinant inbred mice (BXD5, BXD8, BXD14, BXD22, BXD29, and BXD32) and their parental mouse lines, C57BL/6J and DBA/2J.
View Article and Find Full Text PDFA forward genetics approach was used to identify genomic elements enhancing axon regeneration in the BXD recombinant mouse strains. Axon regeneration was induced by knocking down in retinal ganglion cells (RGCs) using adeno-associated virus (AAV) to deliver an shRNA followed by an intravitreal injection of Zymosan with CPT-cAMP that produced a mild inflammatory response. RGC axons were damaged by optic nerve crush (ONC).
View Article and Find Full Text PDFFront Genet
September 2024
Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, United States.
Ethanol's anxiolytic actions contribute to increased consumption and the development of Alcohol Use Disorder (AUD). Our laboratory previously identified genetic loci contributing to the anxiolytic-like properties of ethanol in BXD recombinant inbred mice, derived from C57BL/6J (B6) and DBA/2J (D2) progenitor strains. That work identified Ninein () as a candidate gene underlying ethanol's acute anxiolytic-like properties in BXD mice.
View Article and Find Full Text PDFExp Neurol
November 2024
Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Shandong, Yantai 264003, China. Electronic address:
The dysregulation of Angiotensin-converting enzyme 2 (ACE2) in central nervous system is believed associates with COVID-19 induced cognitive dysfunction. However, the detailed mechanism remains largely unknown. In this study, we performed a comprehensive system genetics analysis on hippocampal ACE2 based on BXD mice panel.
View Article and Find Full Text PDFFront Neurosci
July 2024
School of Pharmacy, Binzhou Medical University, Yantai, China.
As a dietary strategy, methionine restriction has been reported to promote longevity and regulate metabolic disorders. However, the role and possible regulatory mechanisms underlying methionine in neurodegenerative diseases such as Alzheimer's disease (AD), remain unexplored. This study utilized the data from BXD recombinant inbred (RI) mice to establish a correlation between the AD phenotype in mice and methionine level.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!