Thyroid hormones are important for normal reproductive function. Although 3,5,3'-triiodothyronine (T3) enhances follicle-stimulating hormone (FSH)-induced preantral follicle growth and granulosa cells development in vitro, little is known about the molecular mechanisms regulating ovarian development via glucose. In this study, we investigated whether and how T3 combines with FSH to regulate glucose transporter protein (GLUT) expression and glucose uptake in granulosa cells. In this study, we present evidence that T3 and FSH cotreatment significantly increased GLUT-1/GLUT-4 expression, and translocation in cells, as well as glucose uptake. These changes were accompanied by upregulation of nitric oxide (NO) synthase (NOS)3 expression, total NOS and NOS3 activity, and NO content in granulosa cells. Furthermore, we found that activation of the mammalian target of rapamycin (mTOR) and phosphoinositide 3-kinase (PI3K)/Akt pathway is required for the regulation of GLUT expression, translocation, and glucose uptake by hormones. We also found that l-arginine upregulated GLUT-1/GLUT-4 expression and translocation, which were related to increased glucose uptake; however, these responses were significantly blocked by N(G)-nitro-l-arginine methylester. In addition, inhibiting NO production attenuated T3- and FSH-induced GLUT expression, translocation, and glucose uptake in granulosa cells. Our data demonstrate that T3 and FSH cotreatment potentiates cellular glucose uptake via GLUT upregulation and translocation, which are mediated through the activation of the mTOR/PI3K/Akt pathway. Meanwhile, NOS3/NO are also involved in this regulatory system. These findings suggest that GLUT is a mediator of T3- and FSH-induced follicular development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/en.2016-1864 | DOI Listing |
Nucl Med Commun
January 2025
Department of Nuclear Medicine, Fudan University Shanghai Cancer Center.
Objective: The objective of this study is to evaluate and compare the clinical utility of 18F-fluoro-2-deoxy-d-glucose PET and computed tomography (18F-FDG PET/CT) in detecting recurrence and metastasis in patients with nasopharyngeal carcinoma (NPC) who exhibit elevated levels of Epstein-Barr virus (EBV) DNA following treatment.
Methods: A total of 103 patients with NPC were studied retrospectively. All patients were in remission following initial treatment.
J Transl Med
January 2025
Department of Biology, University of Turku, Turku, Finland.
Introduction: Doxorubicin is a chemotherapeutic drug used to treat various cancers. Exercise training (ET) can attenuate some cardiotoxic effects of doxorubicin (DOX) in tumor-free animals. However, the ET effects on cardiac function and glucose metabolism in DOX-treated breast cancer models remain unclear.
View Article and Find Full Text PDFSci Rep
January 2025
Applied Research and Technology, Abbott Diagnostics Division, Abbott Laboratories, Abbott Park, IL, 60064, USA.
Measurement of glycated hemoglobin (HbA1c) in human red blood cells plays a critical role in the diagnosis and treatment of diabetes mellitus. However, recent studies have suggested large variation in the relationship between average glucose levels and HbA1c, creating the need to understand glucose variability at the cellular level. Here, we devised a fluorescence-based method to quantitatively observe GLUT1-mediated intracellular glucose analog tracer uptake in individual RBCs utilizing microfluidics and confocal microscopy.
View Article and Find Full Text PDFCureus
December 2024
Diagnostic Radiology and Nuclear Medicine, Institute of Science Tokyo, Tokyo, JPN.
Desmoid fibromatosis (DF) is a rare, non-metastasizing but locally aggressive mesenchymal tumor arising from fibroblasts or myofibroblasts. We report a solitary case of DF involving the retropharyngeal and danger spaces, a location rarely documented. The patient, a woman in her 70s, presented with progressive pharyngeal discomfort over six months.
View Article and Find Full Text PDFAntioxid Redox Signal
January 2025
Department of Mitochondrial Physiology, No.75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
Type 2 diabetes as a world-wide epidemic is characterized by the insulin resistance concomitant to a gradual impairment of β-cell mass and function (prominently declining insulin secretion) with dysregulated fatty acids (FAs) and lipids, all involved in multiple pathological development. Recently, redox signaling was recognized to be essential for insulin secretion stimulated with glucose (GSIS), branched-chain keto-acids, and FAs. FA-stimulated insulin secretion (FASIS) is a normal physiological event upon postprandial incoming chylomicrons.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!