The hormones ghrelin and leptin act via the lateral hypothalamic area (LHA) to modify energy balance, but the underlying neural mechanisms remain unclear. We investigated how leptin and ghrelin engage LHA neurons to modify energy balance behaviors and whether there is any crosstalk between leptin and ghrelin-responsive circuits. We demonstrate that ghrelin activates LHA neurons expressing hypocretin/orexin (OX) to increase food intake. Leptin mediates anorectic actions via separate neurons expressing the long form of the leptin receptor (LepRb), many of which coexpress the neuropeptide neurotensin (Nts); we refer to these as NtsLepRb neurons. Because NtsLepRb neurons inhibit OX neurons, we hypothesized that disruption of the NtsLepRb neuronal circuit would impair both NtsLepRb and OX neurons from responding to their respective hormonal cues, thus compromising adaptive energy balance. Indeed, mice with developmental deletion of LepRb specifically from NtsLepRb neurons exhibit blunted adaptive responses to leptin and ghrelin that discoordinate the mesolimbic dopamine system and ingestive and locomotor behaviors, leading to weight gain. Collectively, these data reveal a crucial role for LepRb in the proper formation of LHA circuits, and that NtsLepRb neurons are important neuronal hubs within the LHA for hormone-mediated control of ingestive and locomotor behaviors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5460836PMC
http://dx.doi.org/10.1210/en.2017-00122DOI Listing

Publication Analysis

Top Keywords

ntsleprb neurons
20
energy balance
16
neurons
10
modify energy
8
leptin ghrelin
8
lha neurons
8
neurons expressing
8
ingestive locomotor
8
locomotor behaviors
8
leptin
7

Similar Publications

Whole-brain monosynaptic inputs and outputs of leptin receptor b neurons of the nucleus tractus solitarii in mice.

Brain Res Bull

September 2023

Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China. Electronic address:

The nucleus tractus solitarii (NTS) is the primary central station that integrates visceral afferent information and regulates respiratory, gastrointestinal, cardiovascular, and other physiological functions. Leptin receptor b (LepRb)-expressing neurons of the NTS (NTS neurons) are implicated in central respiration regulation, respiratory facilitation, and respiratory drive enhancement. Furthermore, LepRb dysfunction is involved in obesity, insulin resistance, and sleep-disordered breathing.

View Article and Find Full Text PDF

Leptin, an adipocyte-derived peptide hormone, has been shown to facilitate breathing. However, the central sites and circuit mechanisms underlying the respiratory effects of leptin remain incompletely understood. The present study aimed to address whether neurons expressing leptin receptor b (LepRb) in the nucleus tractus solitarii (NTS) contribute to respiratory control.

View Article and Find Full Text PDF

The lateral hypothalamic area (LHA) is essential for ingestive behavior but it remains unclear how LHA neurons coordinate feeding vs. drinking. Most LHA populations promote food and water consumption but LHA neurotensin (Nts) neurons preferentially induce water intake while suppressing feeding.

View Article and Find Full Text PDF

The hormones ghrelin and leptin act via the lateral hypothalamic area (LHA) to modify energy balance, but the underlying neural mechanisms remain unclear. We investigated how leptin and ghrelin engage LHA neurons to modify energy balance behaviors and whether there is any crosstalk between leptin and ghrelin-responsive circuits. We demonstrate that ghrelin activates LHA neurons expressing hypocretin/orexin (OX) to increase food intake.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!