As honey bee populations worldwide are declining there is an urgent need for a deeper understanding of stress reactivity in these important insects. Our data indicate that stress responses in bees (Apis mellifera L.) may be mediated by neuropeptides identified, on the basis of sequence similarities, as allatostatins (ASTA, ASTC and ASTCC). Effects of allatostatin injection are compared with stress-related changes in learning performance induced by the honeybee alarm pheromone, isopentylacetate (IPA). We find that bees can exhibit two markedly different responses to IPA, with opposing effects on learning behaviour and memory generalisation, and that strikingly similar responses can be elicited by allatostatins, in particular ASTCC. These findings lend support to the hypothesis that allatostatins mediate stress reactivity in honey bees and suggest responses to stress in these insects are state dependent.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5360335 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0174321 | PLOS |
J Econ Entomol
November 2024
State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticides and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China.
Insect pheromones are critical chemical signals that regulate intraspecific behavior and play a key role in the dynamic monitoring and control of pest populations. Historically, research on insect pheromones has primarily focused on lipid-based compounds. However, terpenes and terpenoids, which are widely occurring classes of bioactive compounds, also play significant roles in insect pheromone blends.
View Article and Find Full Text PDFPlant Sci
January 2025
School of Life Science, Anhui Agricultural University, Hefei, China. Electronic address:
German chamomile (Matricaria chamomilla L.) is a traditional medicinal aromatic plant, and the sesquiterpenoids in its flowers have important medicinal value. The (E)-β-farnesene (EβF) is one of the active sesquiterpenoid components and is also a major component of aphid alarm pheromones.
View Article and Find Full Text PDFInsects
October 2024
FARMARTEM Group, Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena, s/n, 48940 Leioa, Biscay, Spain.
(Lepeletier, 1836) (Hymenoptera: Vespidae) is a eusocial insect that lives in colonies of hundreds to thousands of individuals, which are divided into castes according to their task: queens, workers, and males. The proper functioning of the colony requires communication between the individuals that make up the colony. Chemical signals (pheromones) are the most common means of communication used by these insects to alarm and differentiate between individuals belonging or not to the colony.
View Article and Find Full Text PDFInsects
September 2024
Department of Chemical Ecology 190t, Institute of Biology, University of Hohenheim, 70599 Stuttgart, Germany.
Insect Sci
September 2024
CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!