Objectives: To evaluate health impacts of drought during the most severe drought in California's recorded history with a rapid assessment method.
Methods: We conducted Community Assessments for Public Health Emergency Response during October through November 2015 in Tulare County and Mariposa County to evaluate household water access, acute stressors, exacerbations of chronic diseases and behavioral health issues, and financial impacts. We evaluated pairwise associations by logistic regression with pooled data.
Results: By assessment area, households reported not having running water (3%-12%); impacts on finances (25%-39%), property (39%-54%), health (10%-20%), and peace of mind (33%-61%); worsening of a chronic disease (16%-46%); acute stress (8%-26%); and considering moving (14%-34%). Impacts on finances or property were each associated with impacts on health and peace of mind, and acute stress.
Conclusions: Drought-impacted households might perceive physical and mental health effects and might experience financial or property impacts related to the drought. Public Health Implications. Local jurisdictions should consider implementing drought assistance programs, including behavioral health, and consider rapid assessments to inform public health action.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5388959 | PMC |
http://dx.doi.org/10.2105/AJPH.2017.303695 | DOI Listing |
Tree Physiol
January 2025
Department of Botany & Plant Pathology, Oregon State University, Corvallis, OR 97331, USA.
Front Plant Sci
December 2024
Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy.
The impact of combined heat and drought stress was investigated in and compared to individual stresses to reveal additive effects and interactions. A combination of plant metabolomics and root and rhizosphere bacterial metabarcoding were used to unravel effects at the plant holobiont level. Hierarchical cluster analysis of metabolomics signatures pointed out two main clusters, one including heat and combined heat and drought, and the second cluster that included the control and drought treatments.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Agronomy Department, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt.
Drought stress significantly impacts wheat productivity, but plant growth regulators may help mitigate these effects. This study examined the influence of gibberellic acid (GA3) and abscisic acid (ABA) on wheat (Triticum aestivum L., CV: Giza 171) growth and yield under different water regimes.
View Article and Find Full Text PDFNat Ecol Evol
January 2025
ARC Centre for Plant Success in Nature & Agriculture, Hawkesbury Institute for the Environment, Western Sydney University, Sydney, New South Wales, Australia.
Wind is an important ecological factor for plants as it can increase evapotranspiration and cause dehydration. However, the impact of wind on plant hydraulics at a global scale remains unclear. Here we compiled plant key hydraulic traits, including water potential at 50% loss of hydraulic conductivity (P), xylem-specific hydraulic conductivity (K), leaf area to sapwood area ratio (A/A) and conduit diameter (D) with 2,786 species-at-site combinations across 1,922 woody species at 469 sites worldwide and analysed their correlations with wind speed.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China; College of Nanjing, University of Chinese Academy of Sciences, Nanjing, 211135, China. Electronic address:
Soil bacterial communities are critical for maintaining ecosystem functions, yet the impact of water level fluctuations on ecosystem multifunctionality (EMF) and the role of bacterial communities in the lake water-level-fluctuating zone (WLFZ) remain poorly understood. This study investigated how seasonal water level fluctuations influence EMF and their relationships with soil bacterial communities through a two-year field survey. We found that soil bacterial diversity was significantly positively correlated with EMF.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!