The remodeling of active sites to generate novel biocatalysts is an attractive and challenging task. We developed a stepwise loop insertion strategy (StLois), in which randomized residue pairs are inserted into active site loops. The phosphotriesterase-like lactonase from Geobacillus kaustophilus (GkaP-PLL) was used to investigate StLois's potential for changing enzyme function. By inserting six residues into active site loop 7, the best variant ML7-B6 demonstrated a 16-fold further increase in catalytic efficiency toward ethyl-paraoxon compared with its initial template, that is a 609-fold higher, >10 fold substrate specificity shift relative to that of wild-type lactonase. The remodeled variants displayed 760-fold greater organophosphate hydrolysis activity toward the organophosphates parathion, diazinon, and chlorpyrifos. Structure and docking computations support the source of notably inverted enzyme specificity. Considering the fundamental importance of active site loops, the strategy has potential for the rapid generation of novel enzyme functions by loop remodeling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acschembio.7b00018 | DOI Listing |
Biochemistry
March 2025
Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
Base editing is a common mechanism by which organisms expand their genetic repertoire to access new functions. Here, we explore the mechanism of tRNA recognition in the bacterial deaminase TadA, which exclusively recognizes tRNA and converts the wobble base adenosine (A34) to inosine. We quantitatively evaluate the dynamics of tRNA binding by incorporating the fluorescent adenine analogue 2-aminopurine (2-AP) at position 34 in the wobble base of the anticodon loop.
View Article and Find Full Text PDFLangmuir
March 2025
Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province. School of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, P. R. China.
The photoelectrochemical properties of hematite-based photoanodes are hindered by severe carrier recombination and poor reaction activity, which is a major challenge. Herein, we coupled zirconium-doped α-FeO (Zr:FeO) and phosphating cobalt molybdate electrocatalyst (P-CoMoO) to ameliorate the above difficulties. The conductivity and carrier density of hematite significantly increase by Zr doping.
View Article and Find Full Text PDFNeuropharmacology
March 2025
Department of Life Sciences, University of Bath, Bath, BA2 7AY, United Kingdom. Electronic address:
The paraventricular thalamus (PVT) is a central node in the integration of stress- and reward-related information that may serve as a pivotal site for opioid receptors to exert their effects. Kappa opioid receptors (KOPrs) and mu opioid receptors (MOPrs) have dissociable and opposing roles in circuits of stress and reward. Interestingly, both are highly expressed in the PVT, however it is not known how aversive KOPr and rewarding MOPr signalling converges to dictate PVT activity and, by proxy, whole brain effects.
View Article and Find Full Text PDFBiochimie
March 2025
Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran; Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran. Electronic address:
L-asparaginase is a critical therapeutic enzyme for treating acute lymphoblastic leukemia (ALL), a common childhood malignancy. In this study, the L-asparaginase coding sequence from halophilic Vibrio sp. (GBPx3) was cloned, expressed in Escherichia coli, and characterized.
View Article and Find Full Text PDFEur J Pharm Sci
March 2025
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria; Canal El Mahmoudia St., Alexandria 21648, Egypt. Electronic address:
In the current medical era, the proliferation and dissemination of drug-resistant strains of Mycobacterium tuberculosis continue to pose a significant worldwide health hazard, necessitating the development of new and innovative medications to combat tuberculosis. Decaprenylphosphoryl-β-D-ribose 2'-epimerase (DprE1) is a crucial enzyme for cell wall synthesis in Mycobacterium tuberculosis (Mtb). Its importance is due to its eminent contribution in forming lipoarabinomannan and arabinogalactan.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!