Hyaluronic acid liposomal gels have previously demonstrated in vivo their great potential for drug delivery. Elucidating their phase behavior and structure would provide a better understanding of their use properties. This work evaluates the microstructure and the phase behavior of mixtures of hyaluronic acid (HA) and liposomes and their impact on the vesicle mobility. HA concentration and surface properties of liposomes (positively or negatively charged, neutral, with a polyethylene glycol corona) are varied while the liposome concentration remains constant. Below the entanglement concentration of HA (0.4%), the mixtures exhibit a depletion phase separation except for positively charged liposomes that interact with anionic HA through attractive electrostatic interactions. At high HA concentration, no macroscopic phase separation is observed, except a slight syneresis with cationic liposomes. The microstructure shows aggregates of liposomes homogeneously distributed into a HA network except for PEGylated liposomes, which seem to form bicontinuous interpenetrating networks. The diffusion of liposomes is controlled by HA concentration and their surface properties. Finally, PEGylated liposomes display the highest mobility at high HA concentration (2.28%) both macro- and microscopically. The microstructure of HA-liposomes mixtures and the diffusion of liposomes are key parameters that must be taken into account for drug delivery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2017.03.029 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!