Inhibitory effect of hesperetin on α-glucosidase: Molecular dynamics simulation integrating inhibition kinetics.

Int J Biol Macromol

Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, PR China. Electronic address:

Published: August 2017

The α-glucosidase inhibitor is of interest to researchers due to its association with type-2 diabetes treatment. Hesperetin is a flavonoid with natural antioxidant properties. This paper presents an evaluation on the effects of hesperetin on α-glucosidase via inhibitory kinetics using a Molecular Dynamics (MD) simulation integration method. Due to the antioxidant properties of hesperetin, it reversibly inhibits α-glucosidase in a slope-parabolic mixed-type manner (IC=0.38±0.05mM; K=0.23±0.01mM), accompanied by tertiary structural changes. Based on computational MD and docking simulations, two hesperetin rings interact with several residues near the active site on the α-glucosidase, such as Lys155, Asn241, Glu304, Pro309, Phe311 and Arg312. This study provides insight into the inhibition of α-glucosidase by binding hesperetin onto active site residues and accompanying structural changes. Hesperetin presents as a potential agent for treating α-glucosidase-associated type-2 diabetes based on its α-glucosidase-inhibiting effect and its potential as a natural antioxidant.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2017.03.072DOI Listing

Publication Analysis

Top Keywords

hesperetin α-glucosidase
8
molecular dynamics
8
dynamics simulation
8
type-2 diabetes
8
natural antioxidant
8
antioxidant properties
8
structural changes
8
active site
8
α-glucosidase
6
hesperetin
6

Similar Publications

Construction and Optimization of Engineered for Synthesis of Phloretin and Its Derivatives.

J Agric Food Chem

December 2024

Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, China.

Phloretin and its derivatives are dihydrochalcone compounds with diverse pharmacological properties and biological activities, offering significant potential for applications in the food and pharmaceutical industries. Due to their structural similarity to flavonoids, their extraction and isolation were highly challenging. Although the biosynthesis of phloretin via three distinct pathways has been reported, a systematic comparison within the same host has yet to be conducted.

View Article and Find Full Text PDF

Constitutively active receptor ADGRA3 signaling induces adipose thermogenesis.

Elife

December 2024

Shenzhen Key Laboratory of Systems Medicine for inflammatory diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China.

The induction of adipose thermogenesis plays a critical role in maintaining body temperature and improving metabolic homeostasis to combat obesity. β3-adrenoceptor (β3-AR) is widely recognized as a canonical β-adrenergic G-protein-coupled receptor (GPCR) that plays a crucial role in mediating adipose thermogenesis in mice. Nonetheless, the limited expression of β3-AR in human adipocytes restricts its clinical application.

View Article and Find Full Text PDF

The effect of a citrus-derived flavonoid, hesperetin, on the automaticity and contraction of isolated guinea pig myocardium was examined. Hesperetin inhibited the rate of ectopic action potential firing of the pulmonary vein myocardium; the slope of the diastolic depolarization was decreased with minimum change in the action potential waveform. The effect was dependent on the concentration; the EC value for firing rate was 56.

View Article and Find Full Text PDF

Machine learning and SHAP value interpretation for predicting comorbidity of cardiovascular disease and cancer with dietary antioxidants.

Redox Biol

December 2024

The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, 510405, China. Electronic address:

Objective: To develop and validate a machine learning model incorporating dietary antioxidants to predict cardiovascular disease (CVD)-cancer comorbidity and to elucidate the role of antioxidants in disease prediction.

Methods: Data were sourced from the National Health and Nutrition Examination Survey. Antioxidants, including vitamins, minerals, and polyphenols, were selected as key features.

View Article and Find Full Text PDF

Hesperetin (Hst) is a common citrus fruit flavonoid with antioxidant, anti-inflammatory, and anti-neurodegenerative effects. To explore the antioxidant and anti-aging effects and mechanisms of Hst, we induced chronic oxidative stress in using low-concentration HO and examined its effects on lifespan, healthy life index, reactive oxygen species (ROS), antioxidant enzymes, and transcriptomic metrics. Hst significantly prolonged lifespan, increased body bending and pharyngeal pumping frequency, decreased ROS accumulation, and increased antioxidant enzyme activity in normal and stressed .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!