Bax is a major player in the apoptotic process, being at the core of the mitochondria permeabilization events. In spite of the major recent advances in the knowledge of Bax organization within the membrane, the precise behavior of the C-terminal helix α9 remains elusive, since it was absent from the resolved structure of active Bax. The Proline 168 (P168) residue, located in the short loop between α8 and α9, has been the target of site-directed mutagenesis experiments, with conflicting results. We have produced and purified a recombinant mutant Bax-P168A, and we have compared its behavior with that of wild-type Bax in a series of tests on Large Unilamellar Vesicles (LUVs) and isolated mitochondria. We conclude that Bax-P168A had a greater ability to oligomerize and bind to membranes. Bax-P168A was not more efficient than wild-type Bax to permeabilize liposomes to small molecules but was more prone to release cytochrome c from mitochondria.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbamem.2017.03.010 | DOI Listing |
Mitochondria maintain a biochemical environment that cooperates with BH3-only proteins (e.g., BIM) to potentiate BAX activation, the key event to initiate physiological and pharmacological forms of apoptosis.
View Article and Find Full Text PDFCurr Issues Mol Biol
December 2024
Institute of Fruit and Floriculture Research, Gansu Academy of Agricultural Sciences, Anning, Lanzhou 730070, China.
During the dormant period of peach trees in winter, flower buds exhibit weak cold resistance and are susceptible to freezing at low temperatures. Understanding the physiological and molecular mechanisms underlying the response of local peach buds to low-temperature adversity is crucial for ensuring normal flowering, fruiting, and yield. In this study, the experimental materials included the conventional cultivar 'Xia cui' (XC) and the cold-resistant local resources 'Ding jiaba' (DJB) peach buds.
View Article and Find Full Text PDFPhotosynthetica
March 2024
College of Agriculture, Henan University of Science and Technology, 471003 Luoyang, China.
The effects of selenite (0, 15, 30, 45 mg L) on physiological characteristics and medicinal components of were analyzed. The results showed that selenite application promoted the activity of superoxide dismutase and the contents of soluble sugar, proline, carotenoids, total flavonoids, and total polyphenols, and decreased the contents of reactive oxygen species, relative electrical conductivity, and malondialdehyde. In addition, selenite also increased chlorophyll content, improved electron transfer ability, PSI and PSII performance, and the coordination between PSI and PSII, which significantly improved photosynthetic capacity.
View Article and Find Full Text PDFJ Physiol Anthropol
October 2024
Department of International Health and Medical Anthropology, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
Background: Tibetan highlanders have adapted to hypoxic environments through genetic mechanisms that avoid hemoglobin concentration increases and prevent polycythemia. Recently, sex differences in hemoglobin dynamics with age have been reported among Tibetan highlanders living in Tsarang. Additionally, concerns have been raised that dietary changes associated with modernization may increase the risk of polycythemia and lifestyle-related diseases among Tibetan highlanders.
View Article and Find Full Text PDFJ Neurochem
September 2024
Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Reno, Nevada, USA.
Charcot-Marie-Tooth disease type 1E (CMT1E) is an inherited autosomal dominant peripheral neuropathy caused by mutations in the peripheral myelin protein 22 (PMP22) gene. The identical leucine-to-proline (L16P) amino acid substitution in PMP22 is carried by the Trembler J (TrJ) mouse and is found in CMT1E patients presenting with early-onset disease. Peripheral nerves of patients diagnosed with CMT1E display a complex and varied histopathology, including Schwann cell hyperproliferation, abnormally thin myelin, axonal degeneration, and subaxonal morphological changes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!