Diabetes-Related Neurological Implications and Pharmacogenomics.

Curr Pharm Des

Hospitalario Universitario de Granada, Instituto de Investigación Biosanitaria de Granada, UGC Provincial de Farmacia de Granada, Pharmacogenetics Unit, 18014 Granada, Spain.

Published: October 2019

Diabetes mellitus (DM) is the most commonly occurring cause of neuropathy around the world and is beginning to grow in countries where there is a risk of obesity. DM Type II, (T2DM) is a common age-related disease and is a major health concern, particularly in developed countries in Europe where the population is aging. T2DM is a chronic disease which is characterised by hyperglycemia, hyperinsulinemia and insulin resistance, together with the body's inability to use glucose as energy. Such metabolic disorder produces a chronic inflammatory state, as well as changes in lipid metabolism leading to hypertriglyceridemia, thereby producing chronic deterioration of the organs and premature morbidity and mortality. The pathology's effects increase cerebral damage, leading to the rapid onset of neurodegenerative diseases. Hyperglycemia causes oxidative stress in tissues which are susceptible to the complications involved in diabetes, including peripheral nerves. Other additional mechanisms include activation of polyol aldose reductase signalling accompanied by protein kinase C (PKC)-ß activation, poly(ADP ribose) polymerase activation, cyclooxygenase (COX) 2 activation, endothelial dysfunction, altered Na+/K+ ATPase pump function, dyslipidaemia and perturbation of calcium balance. All the forgoing has an impact on neuron activity, mitochondrial function, membrane permeability and endothelial function. These biochemical processes directly affect the neurons and endothelial tissue, thereby accelerating cerebral aging by means of peroxidation of the polyunsaturated fatty acids and thus injuring cell membrane integrity and inducing apoptosis in the glial cells. The Central Nervous System (CNS) includes two types de glial cells: microglia and macroglia (astrocytes, oligodendrocytes and radial cells which include Bergmann cells and Müller cells). Glial cells constitute more than 90% of the CNS cell population. Human studies have shown that some oral antidiabetic drugs can improve cognition in patients suffering mild cognitive impairment (MCI) and dementia [1, 2]. While it is still unclear whether diabetes management will reduce MCI and Alzheimer's disease (AD), incidence, emerging evidence suggests that diabetes therapies may improve cognitive function. This review focuses three aspects: the clinical manifestation of diabetes regarding glial and neuronal cells, the association between neurodegeneration and diabetes and summarises some of the pharmacogenomic data obtained from studies of T2DM treatment, focusing on polymorphisms in genes affecting pharmacokinetics, pharmacodynamics and treatment outcome of the most commonly-prescribed oral anti-diabetic drugs (OADs).

Download full-text PDF

Source
http://dx.doi.org/10.2174/1381612823666170317165350DOI Listing

Publication Analysis

Top Keywords

glial cells
12
cells
7
diabetes
6
diabetes-related neurological
4
neurological implications
4
implications pharmacogenomics
4
pharmacogenomics diabetes
4
diabetes mellitus
4
mellitus commonly
4
commonly occurring
4

Similar Publications

Dopamine (DA) plays important roles in various behaviors, including learning and motivation. Recently, THOC5 was identified as an important regulator in the development of dopaminergic neurons. However, how THOC5 is regulated has not been explored.

View Article and Find Full Text PDF

Astrocyte to neuron reprogramming has been performed using viral delivery of neurogenic transcription factors in GFAP expressing cells. Recent reports of off-target expression in cortical neurons following adeno-associated virus (AAV) transduction to deliver the neurogenic factors have confounded our understanding of the efficacy of direct cellular reprogramming. To shed light on potential mechanisms that may underlie the neuronal off-target expression of GFAP promoter driven expression of neurogenic factors in neurons, two regionally distinct cortices were compared-the motor cortex (MC) and medial prefrontal cortex (mPFC)-and investigated: (1) the regional tropism and astrocyte transduction with an AAV5-GFAP vector, (2) the expression of Gfap in MC and mPFC neurons; and (3) material transfer between astrocytes and neurons.

View Article and Find Full Text PDF

The bipolar disorder (BD) risk gene ANK3 encodes the scaffolding protein AnkyrinG (AnkG). In neurons, AnkG regulates polarity and ion channel clustering at axon initial segments and nodes of Ranvier. Disruption of neuronal AnkG causes BD-like phenotypes in mice.

View Article and Find Full Text PDF

Epidemic Zika virus strains from the Asian lineage induce an attenuated fetal brain pathogenicity.

Nat Commun

December 2024

KU Leuven Department of Microbiology, Immunology and Transplantation, Virology, Antiviral Drug & Vaccine Research Group, Rega Institute for Medical Research, Leuven, Belgium.

The 2015-2016 Zika virus (ZIKV) outbreak in the Americas revealed the ability of ZIKV from the Asian lineage to cause birth defects, generically called congenital Zika syndrome (CZS). Notwithstanding the long circulation history of Asian ZIKV, no ZIKV-associated CZS cases were reported prior to the outbreaks in French Polynesia (2013) and Brazil (2015). Whether the sudden emergence of CZS resulted from an evolutionary event of Asian ZIKV has remained unclear.

View Article and Find Full Text PDF

Growth differentiation factor 15, GDF15, and glucagon-like peptide-1 (GLP-1) analogues act through brainstem neurons that co-localise their receptors, GDNF-family receptor α-like (GFRAL) and GLP1R, to reduce food intake and body weight. However, their use as clinical treatments is partially hampered since both can also induce sickness-like behaviours, including aversion, that are mediated through a well-characterised pathway via the exterolateral parabrachial nucleus. Here, in mice, we describe a separate pathway downstream of GFRAL/GLP1R neurons that involves a distinct population of brain-derived neurotrophic factor (BDNF) cells in the medial nucleus of the tractus solitarius.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!