Introduction: Elevated inflammation accounts for approximately 30% of preterm birth (PTB) cases. We previously reported that targeting the peroxisome proliferator-activated receptor gamma (PPARγ) pathway reduced the incidence of PTB in the mouse model of endotoxin-induced PTB. The PPARγ has proven anti-inflammatory functions and its activation via rosiglitazone significantly downregulated the systemic inflammatory response and reduced PTB and stillbirth rate by 30% and 41%, respectively, in our model. Oxidative stress is inseparable from inflammation, and rosiglitazone has a reported antioxidative activity. In the current study, we therefore aimed to evaluate whether rosiglitazone treatment had effects outside of inflammatory pathway, specifically on the antioxidation pathway in our model.
Methods: Pregnant C57BL/6J mice (E16.5) were treated with phosphate-buffered saline (PBS), rosiglitazone (Rosi), lipopolysaccharide (LPS; 10µg in 200µL 1XPBS), or LPS + Rosi (6 hours after the LPS injection). The myometrial and decidual tissues were collected and processed for macrophage isolation using magnetic cell sorting and F4/80+ antibody. Expression levels of antioxidative factors- Nrf2 and Ho-1-along with the LPS receptor Tlr4 were quantified by quantitative polymerase chain reaction. The protein levels were assessed by immunofluorescence staining.
Results: Both the decidual and myometrial macrophages from the LPS-treated animals showed significantly lowered expression of Ho-1 and Nrf2 and higher expression of Tlr4 when compared to the PBS control group. The macrophages from the animals in the LPS + Rosi group had significantly elevated expression of Ho-1 and Nrf2 and downregulated expression of Tlr4 when compared to the LPS group.
Conclusion: Rosiglitazone administration prevents PTB by downregulating inflammation and upregulating antioxidative response.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6728562 | PMC |
http://dx.doi.org/10.1177/1933719117697128 | DOI Listing |
J Orthop Surg Res
December 2024
Department of Orthopaedic Trauma, Hebei Medical University Third Hospital, Ziqiang Road No.139, Shijiazhuang, Hebei Province, 050051, China.
Background: Posttraumatic osteoarthritis (PTOA) is directly associated with early acute articular cartilage injury. Inhibition of cartilage destruction immediately following joint damage can effectively slow or prevent PTOA progression. Therefore, we sought to determine intervention targets and therapeutic strategies in the acute stage of cartilage injury.
View Article and Find Full Text PDFBioorg Chem
December 2024
State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China. Electronic address:
To explore potential anti-inflammatory lead compounds, ten new physalin steroids, including three neophysalins (1, 4, and 9) and seven physalins (2, 3, 5-8, and 10), along with eleven known analogs, were isolated from an ethanol extract of the calyx of Physalis alkekengi. The new structures were rigorously determined through comprehensive HRESIMS, 1D/2D-NMR, and X-ray diffraction analysis. Among these compounds, 1 was identified as a new 1,10-seco-neophysalin, and 2 was identified as a new 11,15-cyclo-9,10-seco-physalin characterized by an aromatic A-ring.
View Article and Find Full Text PDFJ Cell Mol Med
December 2024
Division of Plastic Surgery, Department of Surgery, Chi-Mei Medical Center, Tainan, Taiwan.
Hyperbaric oxygen (HBO) therapy has emerged as a potential treatment, shown to enhance blood flow and angiogenesis. However, specific effects and mechanisms of HBO on limb ischaemia responding to a hypoxic environment remain largely unknown. We aimed to investigate the therapeutic potential of HBO in the treatment of limb ischaemia.
View Article and Find Full Text PDFiScience
December 2024
Poltava State Medical University, Department of Pathophysiology, Poltava, Ukraine.
5-Aminolevulinic acid (5-ALA) is an essential compound in the biosynthesis of heme, playing a critical role in various physiological processes within the human body. This review provides the thorough analysis of the latest research on the molecular mechanisms and potential therapeutic benefits of 5-ALA in managing metabolic disorders. The ability of 5-ALA to influence immune response and inflammation, oxidative/nitrosative stress, antioxidant system, mitochondrial functions, as well as carbohydrate and lipid metabolism, is mediated by molecular mechanisms associated with the suppression of the transcription factor NF-κB signaling pathway, activation of the transcription factor Nrf2/heme oxygenase-1 (HO-1) system leading to the formation of heme-derived reaction products (carbon monoxide, ferrous iron, biliverdin, and bilirubin), which may contribute to HO-1-dependent cytoprotection through antioxidant and immunomodulatory effects.
View Article and Find Full Text PDFAnim Biotechnol
December 2025
Department of Endocrinology and Metabolism, People's Hospital of Yichun City, Yichun, Jiangxi, People's Republic of China.
The natural flavonoid quercetin, which exhibits a range of biological activities, has been implicated in liver disease resistance in recent research. study attesting to quercetin's protective effect against metabolic-associated fatty liver disease (MAFLD) is inadequate, however. Here, our investigation explored the potential benefits of quercetin in preventing MAFLD in C57BL/6 mice fed a high-fat diet (HFD).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!