Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Trichlorfon (TF), an organophosphorus insecticide, has been widely used in seawater aquaculture; it is easily degraded to the highly toxic insecticide, dichlorvos (DDVP). In this study, the enantioseparation of TF enantiomers, as well as their degradation behavior and product (DDVP) formation in mariculture pond sediments, was investigated. The results show that both TF enantiomers degrade into DDVP, which is the main degradation product. Furthermore, S-(+)-TF is preferentially degraded under natural conditions, suggesting that TF enantiomers degrade enantioselectively. Nevertheless, the degradation behavior of TF enantiomers is not enantiospecific under sterile conditions. The formation of DDVP and the enantiospecific degradation of TF enantiomers are attributed to the activities of microbes present in the sediments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chir.22686 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!