The roles of photosynthesis-related traits in invasiveness of introduced plant species are still not well elucidated, especially in nutrient-poor habitats. In addition, little effort has been made to determine the physiological causes and consequences of the difference in these traits between invasive and native plants. To address these problems, we compared the differences in 16 leaf functional traits related to light-saturated photosynthetic rate (P ) between 22 invasive and native plants in a nutrient-poor habitat in northeast China. The invasive plants had significantly higher P , photosynthetic nitrogen- (PNUE), phosphorus- (PPUE), potassium- (PKUE) and energy-use efficiencies (PEUE) than the co-occurring natives, while leaf nutrient concentrations, construction cost (CC) and specific leaf area were not significantly different between the invasive and native plants. The higher PNUE contributed to higher P for the invasive plants, which in turn contributed to higher PPUE, PKUE and PEUE. CC changed independently with other traits such as P , PNUE, PPUE, PKUE and PEUE, showing two trait dimensions, which may facilitate acclimation to multifarious niche dimensions. Our results indicate that the invasive plants have a superior resource-use strategy, i.e. higher photosynthesis under similar resource investments, contributing to invasion success in the barren habitat.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/ppl.12566 | DOI Listing |
Glob Chang Biol
January 2025
Departament de Ciències Ambientals, Facultat de Ciències, Universitat de Girona, Girona, Spain.
Biological invasions are a major threat to biodiversity, ecosystem functioning and nature's contributions to people worldwide. However, the effectiveness of invasive alien species (IAS) management measures and the progress toward achieving biodiversity targets remain uncertain due to limited and nonuniform data availability. Management success is usually assessed at a local level and documented in technical reports, often written in languages other than English, which makes such data notoriously difficult to collect at large geographic scales.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy.
Aromia bungii is an invasive Cerambycidae of major concern at the global scale because of the damage caused to Rosaceae. Given the major phytosanitary relevance of A. bungii, predicting its spread in invaded areas and identifying possible new suitable regions worldwide remains a key action to develop appropriate management practices and optimise monitoring and early detection campaigns.
View Article and Find Full Text PDFEcol Lett
January 2025
Department of Biology, University of Konstanz, Konstanz, Germany.
Quantifying how co-acting global change factors (GCFs) influence plant invasion is crucial for predicting future invasion dynamics. We did a meta-analysis to assess pairwise effects of five GCFs (elevated CO, drought, eutrophication, increased rainfall and warming) on native and alien plants. We found that alien plants, compared to native plants, suffered less or benefited more for four of the eight pairwise GCF combinations, and that all GCFs acted additively.
View Article and Find Full Text PDFGlob Chang Biol
January 2025
Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, Oregon, USA.
Climate change and biological invasions are affecting natural ecosystems globally. The effects of these stressors on native species' biogeography have been studied separately, but their combined effects remain overlooked. Here, we develop a framework to assess how climate change influences both the range and niche overlap of native and non-native species using ecological niche models.
View Article and Find Full Text PDFParasit Vectors
January 2025
National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary.
Background: Mosquitoes, as vectors of various pathogens, have been a public health risk for centuries. Human activities such as international travel and trade, along with climate change, have facilitated the spread of invasive mosquitoes and novel pathogens across Europe, increasing the risk of mosquito-borne disease introduction and their spread. Despite this threat, mosquito control in Hungary still relies predominantly on chemical treatments, which poses the risk of developing insecticide resistance in local populations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!