B lymphopoiesis arrests precipitously in rabbits such that by 2-4 mo of age, before sexual maturity, little to no B lymphopoiesis occurs in the bone marrow (BM). Previously, we showed that in mice, adipocytes inhibit B lymphopoiesis in vitro by inducing inflammatory myeloid cells, which produce IL-1β. In this study, we characterized rabbit BM after the arrest of B lymphopoiesis and found a dramatic increase in fat, increased CD11b myeloid cells, and upregulated expression of the inflammatory molecules, IL-1β and S100A9, by the myeloid cells. We added BM fat, CD11b myeloid cells, and recombinant S100A9 to B lymphopoiesis cultures and found that they inhibited B lymphopoiesis and enhanced myelopoiesis. Unlike IL-1β, which inhibits B lymphopoiesis by acting on early lymphoid progenitors, S100A9 inhibits B lymphopoiesis by acting on myeloid cells and promoting the release of inflammatory molecules, including IL-1β. Many molecules produced by adipocytes activate the NLRP3 inflammasome, and the NLRP3 inhibitor, glibenclamide, restored B lymphopoiesis and minimized induction of myeloid cells induced by adipocyte-conditioned medium in vitro. We suggest that fat provides an inflammatory microenvironment in the BM and promotes/activates myeloid cells to produce inflammatory molecules such as IL-1β and S100A9, which negatively regulate B lymphopoiesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5435233 | PMC |
http://dx.doi.org/10.4049/jimmunol.1601643 | DOI Listing |
Acta Pharm Sin B
December 2024
School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
The fat mass and obesity-associated protein (FTO) is an RNA demethylase required for catalytic demethylation of -methyladenosine (mA); it is highly expressed and functions as an oncogene in acute myeloid leukemia (AML). Currently, the overarching objective of targeting FTO is to precisely inhibit the catalytic activity. Meanwhile, whether FTO degradation also exerts antileukemic effects remains unknown.
View Article and Find Full Text PDFJ Biomed Mater Res A
January 2025
Advanced Ceramics, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan.
Implanted biomaterials release inorganic ions that trigger inflammatory responses, which recruit immune cells whose biochemical signals affect bone tissue regeneration. In this study, we evaluated how mouse macrophages (RAW264, RAW) and mesenchymal stem cells (KUSA-A1, MSCs) respond to seven types of ions (silicon, calcium, magnesium, zinc, strontium, copper, and cobalt) that reportedly stimulate cells related to bone formation. The collagen synthesis, alkaline phosphatase activity, and osteocalcin production of the MSCs varied by ion dose and type after culture in the secretome of RAW cells.
View Article and Find Full Text PDFKorean J Physiol Pharmacol
January 2025
Department of Anatomy and Convergence Medical Science, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Korea.
Microglial activation during aging is associated with neuroinflammation and cognitive impairment. Galectin-3 plays a crucial role in microglial activation and phagocytosis. However, the role of galectin-3 in the aged brain is not completely understood.
View Article and Find Full Text PDFRen Fail
December 2025
Department of Endocrinology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China.
Background: Monocyte to high-density lipoprotein cholesterol ratio (MHR) is considered a novel marker of inflammation. However, whether MHR can predict the risk of diabetic kidney disease (DKD) remains uncertain. Our research aimed to investigate the relationship between MHR and DKD.
View Article and Find Full Text PDFBr J Haematol
January 2025
Institut d'Investigacions Biomèdiques August Pi iSunyer (IDIBAPS), Barcelona, Spain.
VEXAS syndrome is a haemato-inflammatory disease caused by somatic UBA1 mutations and characterized by cytoplasmic vacuoles in myeloid and erythroid precursor cells. Although there is currently no standard treatment algorithm for VEXAS, patients are generally treated with anti-inflammatory therapies focused on symptom management, with only partial effectiveness. Hypomethylating agents (HMA) have shown promise in VEXAS patients with concomitant myelodysplastic syndrome (MDS), while the efficacy of HMA in VEXAS patients without MDS is largely unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!