Primary Clofazimine and Bedaquiline Resistance among Isolates from Patients with Multidrug-Resistant Tuberculosis.

Antimicrob Agents Chemother

Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, and Beijing Chest Hospital, Capital Medical University, Beijing, China

Published: June 2017

Clofazimine has been repurposed for the treatment of tuberculosis, especially for multidrug-resistant tuberculosis (MDR-TB). To test the susceptibility to clofazimine of clinical isolates, MICs of clofazimine were determined using the microplate alamarBlue assay (MABA) method for 80 drug-resistant isolates and 10 drug-susceptible isolates for comparison. For five clofazimine-resistant strains isolated from previously treated pre-extensively drug-resistant TB (pre-XDR-TB) and XDR-TB patients without prior exposure to clofazimine or bedaquiline, clofazimine MICs were ≥1.2 μg/ml. Four isolates with cross-resistance to bedaquiline had mutations. The other isolate with no resistance to bedaquiline had an mutation. This study adds to a recent study showing that 6.3% of MDR-TB patients without prior clofazimine or bedaquiline exposure harbored isolates with mutations, which raises concern that preexisting resistance to these drugs may be associated with prior TB treatment. Furthermore, we propose a tentative breakpoint of 1.2 μg/ml for clofazimine resistance using the MABA method. More-widespread surveillance and individualized testing for clofazimine and bedaquiline resistance, together with assessment of their clinical usage, especially among previously treated and MDR-TB patients, are warranted.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5444180PMC
http://dx.doi.org/10.1128/AAC.00239-17DOI Listing

Publication Analysis

Top Keywords

clofazimine bedaquiline
16
bedaquiline resistance
8
multidrug-resistant tuberculosis
8
clofazimine
8
maba method
8
patients prior
8
mdr-tb patients
8
bedaquiline
6
isolates
6
resistance
5

Similar Publications

Background: There are few data on the treatment of children and adolescents with multidrug-resistant (MDR) or rifampicin-resistant (RR) tuberculosis, especially with more recently available drugs and regimens. We aimed to describe the clinical and treatment characteristics and their associations with treatment outcomes in this susceptible population.

Methods: We conducted a systematic review and individual participant data meta-analysis.

View Article and Find Full Text PDF

Dried blood spot (DBS) assays to quantify novel and repurposed drugs for the treatment of rifampicin-resistant tuberculosis (RR-TB) would facilitate pharmacokinetic studies and therapeutic drug monitoring in low-middle income settings, considering their ease of application and simple sample storage requirements. We describe a DBS method for the simultaneous quantification of bedaquiline and metabolite N-desmethyl bedaquiline, linezolid, levofloxacin, and clofazimine. The analytes were extracted from the matrix and isolated by solid-phase extraction.

View Article and Find Full Text PDF

Efficacy of carbonyl cyanide-3-chlorophenylhydrazone in combination with antibiotics against .

Microbiol Spectr

December 2024

National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Institute, Capital Medical University, Beijing, China.

Given the intrinsic resistance of to a wide range of conventional antibiotics, it is urgent to explore new therapeutic approaches to manage this infection effectively. Carbonyl cyanide 3-chlorophenylhydrazone (CCCP), a proton pump inhibitor, has shown good bacteriostatic activity against . This study aimed to determine its synergistic antimicrobial effects when combined with commonly used antibiotics.

View Article and Find Full Text PDF

, a leading non-tuberculous mycobacterium (NTM) pathogen, causes chronic pulmonary infections, particularly in individuals with underlying lung conditions or immunosuppression. Current treatments involve prolonged multi-drug regimens with poor outcomes and significant side effects, highlighting the urgent need for improved therapies. Using a BALB/c mouse model of chronic pulmonary disease, we evaluated the efficacy of individual antibiotics-clarithromycin, clofazimine, and rifabutin-and combination regimens including clarithromycin+bedaquiline and clarithromycin+clofazimine+bedaquiline.

View Article and Find Full Text PDF

This comparative study aimed at qualifying a broth microdilution (BMD) assay for phenotypic drug susceptibility testing (pDST) of complex (MTBC) strains for implementation in a routine DST workflow. The assay was developed based on the EUCAST (European Committee on Antimicrobial Susceptibility Testing) reference protocol for determination of the minimum inhibitory concentration (MIC) of 14 anti-tuberculous drugs (isoniazid [INH], rifampicin [RIF], ethambutol [EMB], amikacin [AMI], moxifloxacin [MFX], levofloxacin [LFX], bedaquiline [BDQ], clofazimine [CFZ], delamanid [DLM], pretomanid [PA], para-aminosalicylic acid [PAS], linezolid [LZD], ethionamide [ETH], and cycloserine [CS]). Forty MTBC strains with various drug resistance profiles were tested to determine the agreement between MIC results and genotypic drug susceptibility testing (gDST) results derived from whole-genome sequencing (WGS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!