Photoluminescent coordination nanosheets (CONASHs) comprising three-way terpyridine (tpy) ligands and zinc(II) ions are created by allowing the two constitutive components to react with each other at a liquid/liquid interface. Taking advantage of bottom-up CONASHs, or flexibility in organic ligand design and coordination modes, we demonstrate the diversity of the tpy-zinc(II) CONASH in structures and photofunctions. A combination of 1,3,5-tris[4-(4'-2,2':6',2″-terpyridyl)phenyl]benzene (1) and Zn(BF) affords a cationic CONASH featuring the bis(tpy)Zn complex motif (1-Zn), while substitution of the zinc source with ZnSO realizes a charge-neutral CONASH with the [Zn(μ-OSO)(tpy)] motif [1-Zn(SO)]. The difference stems from the use of noncoordinating (BF) or coordinating and bridging (SO) anions. The change in the coordination mode alters the luminescence (480 nm blue in 1-Zn; 552 nm yellow in 1-Zn(SO)). The photophysical property also differs in that 1-Zn(SO) shows solvatoluminochromism, whereas 1-Zn does not. Photoluminescence is also modulated by the tpy ligand structure. 2-Zn contains triarylamine-centered terpyridine ligand 2 and features the bis(tpy)Zn motif; its emission is substantially red-shifted (590 nm orange) compared with that of 1-Zn. CONASHs 1-Zn and 2-Zn possess cationic nanosheet frameworks with counteranions (BF), and thereby feature anion exchange capacities. Indeed, anionic xanthene dyes were taken up by these nanosheets, which undergo quasi-quantitative exciton migration from the host CONASH. This series of studies shows tpy-zinc(II) CONASHs as promising potential photofunctional nanomaterials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.6b12810DOI Listing

Publication Analysis

Top Keywords

coordination nanosheets
8
1-zn
5
coordination
4
nanosheets based
4
based terpyridine-zincii
4
terpyridine-zincii complexes
4
complexes photoactive
4
photoactive host
4
host materials
4
materials photoluminescent
4

Similar Publications

Michael and Schiff-Base Reactions-Assisted Fluorescence Sensor Based on the MOF Nanosheet Microspheres for the Effective Discrimination and Detection of Hydroquinone and Catechol.

Anal Chem

January 2025

Center of Advanced Analysis and Gene Sequencing, Key Laboratory of Molecular Sensing and Harmful Substances Detection Technology, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, P. R. China.

A novel sensing platform was constructed for the recognition and identification of dihydroxybenzene isomers based on the MOF-0.02TEA fluorescence sensor with the morphology of nanosheet microspheres through coordination modulation. Based on the sensing principle that the amino group on the MOF-0.

View Article and Find Full Text PDF

Atomically dispersed rare earth dysprosium-nitrogen-carbon for boosting oxygen reduction reaction.

J Colloid Interface Sci

January 2025

Collaborative Innovation Center of Sustainable Energy Materials, School of Physical Science and Technology, Guangxi University, Guangxi Key Laboratory of Electrochemical Energy Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Nanning 530004, China. Electronic address:

Transition metal-nitrogen-carbon (MNC) based on 3d metal atoms as promising non-precious metal catalysts have been extensively exploited for oxygen reduction reaction (ORR), but MNC with 4f rare earth metals have been largely ignored, most likely due to their large atomic radii that are difficult to coordinate with N dopants using conventional precursors. Herein, atomically dispersed dysprosium-nitrogen-carbon (DyNC) nanosheets were developed via the pyrolysis of anitrogen-containing chelate compound of 2, 4, 6-Tri (2-pyridyl) 1, 3, 5-triazine (TPTZ) ligand with Dy under the assistance of molten NaCl. The as-synthesized DyNC features specific moieties of single Dy atom coordinated by N and O as active sites for ORR, displaying excellent performance.

View Article and Find Full Text PDF

ConspectusStructural DNA nanotechnology offers a unique self-assembly toolbox to construct soft materials of arbitrary complexity, through bottom-up approaches including DNA origami, brick, wireframe, and tile-based assemblies. This toolbox can be expanded by incorporating interactions orthogonal to DNA base-pairing such as metal coordination, small molecule hydrogen bonding, π-stacking, fluorophilic interactions, or the hydrophobic effect. These interactions allow for hierarchical and long-range organization in DNA supramolecular assemblies through a DNA-minimal approach: the use of fewer unique DNA sequences to make complex structures.

View Article and Find Full Text PDF

Highly Air-Stable N-Doped Two-Dimensional Violet Phosphorus with Atomically Flat Surfaces.

ACS Nano

December 2024

University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.

Few-layer violet phosphorus (VP) shows excellent potential in optoelectronic applications due to its unique in-plane anisotropy and high mobility. However, the poor air stability of VP severely limits its practical applications. This article reports highly air-stable VP obtained by a two-step nitrogen plasma treatment where the nitrogen volume flow rate is controlled to coordinate physical etching and chemical doping.

View Article and Find Full Text PDF

Correlation between ligand-mediated silver species on TiO nanosheet with the photocatalytic hydrogen evolution activities.

J Colloid Interface Sci

December 2024

School of Materials Science & Engineering, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan 250022, China. Electronic address:

Metal oxide photocatalysts loaded with metal species are extremely important in photocatalysis. The physicochemical states of metal species, as well as the interaction between metal species and support, determine the transfer of charge carriers between the heterointerface, which has a significant impact on photocatalytic activity. Here, we prepared anatase TiO nanosheets (TIO) modified with different Ag species, including single atoms, clusters, and nanoparticles, using a ligand-mediated method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!