The study addresses the life cycle cost assessment (LCCA) of steel bridges, focusing on the maintenance activities and the maintenance scenario. Firstly, the unit costs of maintenance activities and their durability (i.e. the time between two activities) are evaluated. Pragmatic data are provided for the environment category C4 and for three activities: Patch Up, Overcoating and Remove & Replace. A comparative LCCA for a typical hypothetic steel girder bridge is carried out, either painted or hot-dip galvanized (HDG), in the environmental class C4. The LCC versus the cumulated life is provided for both options. The initial cost of the steel unpainted option is only 50.3% of the HDG option. It is shown that after 'Overcoating' occurring at 18.5 years, the total Net Present Value (NPV) of the painted option surpasses that of the HDG option. A sensitivity analysis of the NPV to the cost and service life parameters, the escalation and discount rates is then performed. The discount and escalation rates, considerably influences the total LCC, following a non-linear trend. The total LCC decreases with the discount rate increasing and, conversely, increases with the escalation rate increasing. Secondly, the influence of the maintenance scenario on the total LCC is assessed based on a probabilistic approach. A permutation of the three independent maintenance activities assumed to occur six times over the life of the bridge is considered and a probability of occurrence is associated to each unique scenario. The most probable scenarios are then classified according to their NPV or achieved service life. This approach leads to the definition of a cost-effective maintenance scenario i.e. the scenario, within all the considered permutations, that has the minimum LCC in a range of lifespan. Besides, the probabilistic analysis also shows that, whatever the scenario, the return on investment period ranges between 18.5 years and 24.2 years. After that period, the HDG option becomes economic.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2017.03.022DOI Listing

Publication Analysis

Top Keywords

maintenance activities
12
maintenance scenario
12
hdg option
12
total lcc
12
life cycle
8
cycle cost
8
cost assessment
8
painted hot-dip
8
hot-dip galvanized
8
185 years
8

Similar Publications

PrP Glycoprotein Is Indispensable for Maintenance of Skeletal Muscle Homeostasis During Aging.

J Cachexia Sarcopenia Muscle

February 2025

Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, Republic of Korea.

Background: The cellular prion protein (PrP), a glycoprotein encoded by the PRNP gene, is known to modulate muscle mass and exercise capacity. However, the role of PrP in the maintenance and regeneration of skeletal muscle during ageing remains unclear.

Methods: This study investigated the change in PrP expression during muscle formation using C2C12 cells and evaluated muscle function in Prnp wild-type (WT) and knock-out (KO) mice at different ages (1, 9 and 15 months).

View Article and Find Full Text PDF

Glucose-6-phosphate dehydrogenase (G6PD) is the rate-limiting enzyme in the pentose phosphate pathway (PPP) in glycolysis. Glucose metabolism is closely implicated in the regulation of mitophagy, a selective form of autophagy for the degradation of damaged mitochondria. The PPP and its key enzymes such as G6PD possess important metabolic functions, including biosynthesis and maintenance of intracellular redox balance, while their implication in mitophagy is largely unknown.

View Article and Find Full Text PDF

Necrotizing fasciitis (NF) is a life-threatening disease that is diagnosed through an exploratory incision and typically requires surgical debridement. Reports of non-surgical cures are limited to specific cases, such as NF affecting only the head and neck regions. The two patients (a woman and a man) were both in their 70s and underwent maintenance dialysis for diabetic nephropathy.

View Article and Find Full Text PDF

The secretory function of adipose tissues in metabolic regulation.

Life Metab

April 2024

Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China.

In addition to their pivotal roles in energy storage and expenditure, adipose tissues play a crucial part in the secretion of bioactive molecules, including peptides, lipids, metabolites, and extracellular vesicles, in response to physiological stimulation and metabolic stress. These secretory factors, through autocrine and paracrine mechanisms, regulate various processes within adipose tissues. These processes include adipogenesis, glucose and lipid metabolism, inflammation, and adaptive thermogenesis, all of which are essential for the maintenance of the balance and functionality of the adipose tissue micro-environment.

View Article and Find Full Text PDF

Background: is an important cash crop in southwestern China, with soil organic carbon playing a vital role in soil fertility, and microorganisms contributing significantly to nutrient cycling, thus both of them influencing tea tree growth and development. However, existing studies primarily focus on soil organic carbon, neglecting carbon fractions, and the relationship between soil organic carbon fractions and microbial communities is unclear. Consequently, this study aims to clarify the impact of different tea planting durations on soil organic carbon fractions and microbial communities and identify the main factors influencing microbial communities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!