Removal of hydrogen sulfide (HS) from biogas was investigated in a biochar column integrated with a bench-scale continuous-stirred tank reactor (CSTR) treating sulfate-laden wastewater. Synthetic wastewater containing sulfate concentrations of 200-2000mg SO/L was used as substrate, and the CSTR was operated at an organic loading rate of 1.5g chemical oxygen demand (COD)/L·day and a hydraulic retention time (HRT) of 20days. The biochar was able to remove about 98.0 (±1.2)% of HS for the ranges of concentrations from 105-1020ppmv, especially at high moisture content (80-85%). Very high HS adsorption capacity (up to 273.2±1.9mg HS/g) of biochar is expected to enhance the HS oxidation into S and sulfate. These findings bring a potentially novel application of sulfur-rich biochar as a source of sulfur, an essential but often deficient micro-nutrient in soils.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2017.03.009 | DOI Listing |
ChemSusChem
January 2025
Spanish Scientific Research Council: Consejo Superior de Investigaciones Cientificas, Metalurgia Primaria y Reciclado de Materiales, SPAIN.
This work aims to recover rare earths from wind turbines NdFeB magnets through pyrometallurgical and hydrometallurgical techniques. First, a NdFeB hydride powder is obtained by decrepitation with hydrogen. Subsequently, this powder was subjected to a chlorination roasting process and successive leaching with water to bring the metals into solution.
View Article and Find Full Text PDFToxins (Basel)
January 2025
Multidisciplinary Agroindustry Research Laboratory, Carrera de Ingeniería en Construcción, Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, Talca 3460000, Chile.
Significant agro-industrial waste is produced during the winemaking process, including grape stalks, which are a rich source of the valuable biopolymer holocellulose that can be utilized for biotechnological processes. The purpose of this study was to delignify grape stalks in order to extract holocellulose. Then Lactobacillus plantarum (LP) was immobilized in the interstitial spaces of holocellulose and then coated with natural polymers (chitosan, Ch; and alginate, Al) to create the Holo-LP/Ch/Al complex.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK.
We used density functional theory with a hybrid functional to investigate the structure and properties of [4H] (hydrogarnet) defects in -quartz as well as the reactions of these defects with electron holes and extra hydrogen atoms and ions. The results demonstrate the depassivation mechanisms of hydrogen-passivated silicon vacancies in -quartz, providing a detailed understanding of their stability, electronic properties, and behaviour in different charge states. While fully hydrogen passivated silicon vacancies are electrically inert, the partial removal of hydrogen atoms activates these defects as hole traps, altering the defect states and influencing the electronic properties of the material.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of Intelligent Supramolecular Chemistry at the University of Yunnan Province, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650500, P. R. China.
Developing efficient and recyclable iodine adsorbents is crucial for addressing radioactive iodine pollution. An imidazole cation-bridged pillar[5]arene polymer (P5-P5I) was synthesized via a salt formation reaction. P5-P5I exhibited a high iodine vapor capture capacity of 2130.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Department of Civil and Environmental Engineering, Indian Institute of Technology Patna, Bihar - 801 106, India. Electronic address:
Perfluorooctanoic acid (PFOA) removal has gained significant attention due to its environmental stability and potential toxicity. This study aims to synthesize a chitosan-modified magnetic biochar (CS_MBC) for efficient PFOA removal from aqueous solutions. Various CS loading ratios (0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!