With current advancements in RNA based therapeutics, it is becoming crucial to utilize theoretical and computational methods to describe properly the physical properties of RNA molecules. NMR and X-ray crystallography are two powerful techniques for investigating structural properties. However, if the RNA molecules are complex or dynamic, these methods might not be adequate. For computational approaches, the quality of the force field will determine accuracy of our predictions. In this contribution, we revise the α/γ torsional parameters of RNA for amber force field using a model system representing an RNA dimer backbone. Combined with revised χ torsional parameters, previously shown to improve computational predictions, we benchmarked the revised force field on five single-stranded RNA (ssRNA) tetramers, three RNA dodecamer duplexes, and an RNA hairpin. A total of 60 μs of molecular dynamics (MD) simulations were run. We also employ the discrete path sampling (DPS) approach to compare the predictions for the revised amber force field with those for amber10. Our results indicate that the unphysical states observed with amber10 in ssRNA MD simulations are suppressed for the revised amber force field. In line with NMR experimental observations, incorporation of the revised α/γ and χ torsional parameters leads to A-form-like conformational states as the most favorable ssRNA tetramer conformations. Furthermore, the revised force field maintains the A-form geometry in regular RNA duplexes. Our revised amber force field for RNA should therefore improve structural and thermodynamic predictions for challenging RNA systems.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.7b00819DOI Listing

Publication Analysis

Top Keywords

force field
32
amber force
20
torsional parameters
16
rna
12
α/γ torsional
12
revised amber
12
computational predictions
8
single-stranded rna
8
revised
8
revised α/γ
8

Similar Publications

Optimizing Nanobubble Production in Ceramic Membranes: Effects of Pore Size, Surface Hydrophobicity, and Flow Conditions on Bubble Characteristics and Oxygenation.

Langmuir

January 2025

John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, 323 Martin Luther King Blvd., Newark, New Jersey 07102, United States.

Precise control of nanobubble size is essential for optimizing the efficiency and performance of nanobubble applications across diverse fields, such as agriculture, water treatment, and medicine. Producing fine bubbles, including nanobubbles, is commonly achieved by purging gas through porous media, such as ceramic or polymer membranes. Many operational factors and membrane properties can significantly influence nanobubble production and characteristics.

View Article and Find Full Text PDF

Symmetry Breaking: Case Studies with Organic Cage-Racemates.

Acc Chem Res

January 2025

School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

ConspectusSymmetry is a pervasive phenomenon spanning diverse fields, from art and architecture to mathematics and science. In the scientific realms, symmetry reveals fundamental laws, while symmetry breaking─the collapse of certain symmetry─is the underlying cause of phenomena. Research on symmetry and symmetry breaking consistently provides valuable insights across disciplines, from parity violation in physics to the origin of homochirality in biology.

View Article and Find Full Text PDF

How well do empirical molecular mechanics force fields model the cholesterol condensing effect?

J Chem Phys

January 2025

School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom.

Membrane properties are determined in part by lipid composition, and cholesterol plays a large role in determining these properties. Cellular membranes show a diverse range of cholesterol compositions, the effects of which include alterations to cellular biomechanics, lipid raft formation, membrane fusion, signaling pathways, metabolism, pharmaceutical therapeutic efficacy, and disease onset. In addition, cholesterol plays an important role in non-cellular membranes, with its concentration in the skin lipid matrix being implicated in several skin diseases.

View Article and Find Full Text PDF

Microwave-assisted evaporation technology is widely used today, but its molecular mechanism is not fully understood. To investigate the molecular mechanism of the influence of microwave electric field direction on water evaporation, this paper designed experiments to measure the microwave energy required to evaporate each gram of water with electric field directions parallel and perpendicular to the water surface. The temperature rise curve of the water is controlled to be consistent in both cases, and the temperature distribution of the water is made uniform by stirring.

View Article and Find Full Text PDF

Structure-based self-supervised learning enables ultrafast protein stability prediction upon mutation.

Innovation (Camb)

January 2025

AIM Center, College of Life Sciences and Technology, Beijing University of Chemical Technology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.

Predicting free energy changes (ΔΔG) is essential for enhancing our understanding of protein evolution and plays a pivotal role in protein engineering and pharmaceutical development. While traditional methods offer valuable insights, they are often constrained by computational speed and reliance on biased training datasets. These constraints become particularly evident when aiming for accurate ΔΔG predictions across a diverse array of protein sequences.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!