Mixtures of two diblock copolymers of very different lengths may feature both macro- and microphase separation; however, not much is known about the mechanisms of separation in diblock copolymer thin films. In the present work, we study thin films of mixtures of two compositionally symmetric block copolymers, both in the one-phase and in the two-phase state, combining coarse-grained molecular simulations (dissipative particle dynamics, DPD) with scattering experiments (grazing-incidence small-angle X-ray scattering, GISAXS). We reveal that the film thickness and selective adsorption of different blocks to the substrate control the distribution of macrophases within the film as well as the orientation of the lamellae therein. In thick films, the mixtures separate in the vertical direction into three layers: Two layers being rich in short copolymers are formed near the film interfaces, whereas a layer being rich in long copolymers is located in the film core. The lamellar orientation in the layers rich in short copolymers is dictated by the surface selectivity, and this orientation only weakly affects the vertical orientation of lamellae in the film core. This provides the opportunity to control the domain orientation in the copolymer films by mixing block copolymers with low-molecular additives instead of relying on a more complicated chemical modification of the substrate. In thinner films, a lateral phase separation appears.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.6b16563 | DOI Listing |
Small
January 2025
SUNAG Laboratory, Institute of Physics, Sachivalaya Marg, Bhubaneswar, 751 005, India.
Understanding the resistive switching (RS) behavior of oxide-based memory devices at nanoscale is crucial for advancement of high-integration density in-memory computing platforms. This study explores a comprehensive growth parameter space to address the RS behavior of pulsed-laser-deposited substoichiometric TiO (TiO) thin films in search of tailored nanoscale memristors with low-power consumption and high stability. Conductive-atomic-force-microscopy-based measurements facilitate deciphering the switching behavior at nanoscale, providing a direct avenue to understand the microstructure-property relationships.
View Article and Find Full Text PDFSmall
January 2025
Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, 28049, Spain.
Conductive metal-organic frameworks (MOFs) are crystalline, intrinsically porous materials that combine remarkable electrical conductivity with exceptional structural and chemical versatility. This rare combination makes these materials highly suitable for a wide range of energy-related applications. However, the electrical conductivity in MOF-based devices is often limited by the presence of different types of structural disorder.
View Article and Find Full Text PDFNano Lett
January 2025
Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518110, China.
Efficient oxygen evolution reaction (OER) catalysts with fast kinetics, high efficiency, and stability are essential for scalable green production of hydrogen. The rational design and fabrication of catalysts play a decisive role in their catalytic behavior. This work presents a high-entropy catalyst, FeCoNiCuMo-O, synthesized via carbothermal shock.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea.
For potential application in advanced memory devices such as dynamic random-access memory (DRAM) or NAND flash, nanolaminated indium oxide (In-O) and gallium oxide (Ga-O) films with five different vertical cation distributions were grown and investigated by using a plasma-enhanced atomic layer deposition (PEALD) process. Specifically, this study provides an in-depth examination of how the control of individual layer thicknesses in the nanolaminated (NL) IGO structure impacts not only the physical and chemical properties of the thin film but also the overall device performance. To eliminate the influence of the cation composition ratio and overall thickness on the IGO thin film, these parameters were held constant across all conditions.
View Article and Find Full Text PDFBackground: Malaria is the disease caused by intracellular parasites known as species and is mainly transmitted by blood sucking female mosquitoes. During pregnancy, malaria results in severe complications to the mother, the fetus and the newborn. Symptoms of malaria, such as fever, malaise, headache, nausea and vomiting, in pregnant women can be mistakenly attributed solely to pregnancy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!