Label-free identification of the microstructure of rat spinal cords based on nonlinear optical microscopy.

J Microsc

Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350007, P. R. China.

Published: August 2017

The spinal cord is a vital link between the brain and the body and mainly comprises neurons, glial cells and nerve fibres. In this work, nonlinear optical (NLO) microscopy based on intrinsic tissue properties was employed to label-freely analyze the cells and matrix in spinal cords at a molecular level. The high-resolution and high-contrast NLO images of unstained spinal cords demonstrate that NLO microscopy has the ability to show the microstructure of white and grey matter including ventral horn, intermediate area, dorsal horns, ventral column, lateral column and dorsal column. Neurons with various sizes were identified in grey matter by dark spots of nonfluorescent nuclei encircled by cytoplasm-emitting two-photon excited fluorescence signals. Nerve fibres and neuroglias were observed in white matter. Besides, the spinal arteries were clearly presented by NLO microscopy. Using spectral and morphological information, this technique was proved to be an effective tool for label-freely imaging spinal cord tissues, based on endogenous signals in biological tissue. With future development, we foresee promising applications of the NLO technique for in vivo, real-time assessment of spinal cord diseases or injures.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jmi.12554DOI Listing

Publication Analysis

Top Keywords

spinal cords
12
spinal cord
12
nlo microscopy
12
nonlinear optical
8
nerve fibres
8
grey matter
8
spinal
7
nlo
5
label-free identification
4
identification microstructure
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!