Voriconazole is a triazole broad-spectrum antifungal medication often used to treat fungal infections caused by Aspergillus and Fusarium species. One of the main challenges associated with the implementation of this medication is its narrow therapeutic concentration range, demonstrating toxicity at concentrations above 6μg/mL and limited efficacy at concentrations below 2μg/mL. As a result, methodologies which permit the rapid and accurate quantitation of voriconazole in patients are highly desirable. In this work two different approaches based on coated blade spray directly coupled to mass spectrometry (CBS-MS) are introduced; each enabling the quantitation of voriconazole in plasma samples with a simple and fast sample preparation and no chromatographic step. The first approach involves a rapid extraction (1min) of the target analyte from 300μL of human plasma using conventional laboratory vessels (e.g. vial, 96-well plate). Alternatively, the second strategy consists of a 2min extraction from a plasma droplet (10μL) placed on the coated area of the blade. Both procedures were successfully validated and good linearity (R≥0.998), accuracy (91-122%) and precision (<8%) were attained in the concentration range evaluated (0.1-50μg/mL). Moreover, very good results in terms of relative matrix effects were obtained given that the slopes of the calibration curves constructed in five different plasma lots exhibited relative standard deviation (RSD) values below 7%. Herein we demonstrated that CBS-MS is a technology suitable for the ultra-fast determination of voriconazole in human plasma samples. Indeed, the proposed methodology can be easily used either for routine drug monitoring or for in vitro pharmacokinetic studies in applications where very small sample volumes are available and great temporal resolution is needed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpba.2017.03.009DOI Listing

Publication Analysis

Top Keywords

quantitation voriconazole
12
human plasma
8
coated blade
8
blade spray
8
mass spectrometry
8
ultra-fast quantitation
4
voriconazole
4
voriconazole human
4
plasma
4
plasma coated
4

Similar Publications

Poloxamer 407 is a versatile excipient that enhances drug solubilization and prolongs drug release. Poloxamers are non-ionic tri-block copolymers composed of a central hydrophobic chain of polyoxypropylene flanked by two hydrophilic chains of polyoxyethylene. Various researchers have utilized Poloxamer 407 in topical and transdermal drug delivery systems, and it has also been reported to enhance skin permeability.

View Article and Find Full Text PDF

Background And Objective: Voriconazole (VRC), a broad-spectrum antifungal drug, exhibits nonlinear pharmacokinetics (PK) due to saturable metabolic processes, autoinhibition and metabolite-mediated inhibition on their own formation. VRC PK is also characterised by high inter- and intraindividual variability, primarily associated with cytochrome P450 (CYP) 2C19 genetic polymorphism. Additionally, recent in vitro findings indicate that VRC main metabolites, voriconazole N-oxide (NO) and hydroxyvoriconazole (OHVRC), inhibit CYP enzymes responsible for VRC metabolism, adding to its PK variability.

View Article and Find Full Text PDF

An LCMS/MS method for the simultaneous determination of ten antimicrobials and its application in critically ill patients.

J Pharm Biomed Anal

January 2025

Medical School of Chinese PLA, Beijing 100853, China; Department of Geriatrics, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China. Electronic address:

Significant pharmacokinetic variation occurs in critically ill patients, leading to underexposure to antibiotics and poor prognosis. In this study, we developed a simple, sensitive, and fast liquid chromatography tandem mass spectrometry (LCMS/MS) platform for the simultaneous quantification of 8 antibacterial and 2 antifungal drugs, which is optimally suited for clinically efficient, real-time therapeutic drug monitoring (TDM). Multiple reaction monitoring (MRM) mass spectrometry was used in this method, and samples were prepared via protein precipitation with methanol.

View Article and Find Full Text PDF

A general and rapid LC-MS/MS method for simultaneous determination of voriconazole, posaconazole, fluconazole, itraconazole and hydroxyitraconazole in IFI patients.

J Pharmacol Toxicol Methods

December 2024

College of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming City, Yunnan Province 650500, China; Department of Pharmacy, Second Affiliated Hospital of Naval Medical University(Shanghai Changzheng Hospital), Shanghai 200003, China. Electronic address:

Article Synopsis
  • A rapid and universal LC-MS/MS method was established to measure the levels of five triazole antifungal drugs in human plasma, targeting drugs such as voriconazole and fluconazole.
  • The method involved a triple quadrupole mass spectrometer and used gradient elution on a specific column, with accurate calibration ranges and strong correlation for all analyzed substances.
  • The results demonstrate that this method is efficient and reliable, having been successfully applied to plasma samples from 66 patients, aiding in clinical treatment of fungal infections.
View Article and Find Full Text PDF

Vulvovaginal candidiasis is a yeast infection commonly caused by the overgrowth of Candida species in and around the vulva and vagina. Abnormal vaginal discharge, itching and irritation, swelling and redness of the vaginal area, pain during sexual intercourse, and dyspareunia are important clinical findings of the infection. Currently, the infection is one of the growing burdens to married women.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!