Charge transfer (CT) state separation is one of the most critical processes in the functioning of an organic solar cell. In this article, we study a bilayer of TQ1 and PC BM molecules presenting disorder at the interface, obtained by means of Molecular Dynamics. The study of the CT state splitting can be first analyzed through the CT state splitting diagram, introduced in a previous work. Through this analysis, we identify the possibility of CT state splitting within Marcus Theory in function of the electric field. Once the right range of electric fields has been identified, we perform Kinetic Monte Carlo simulations to estimate percentages and times for the CT state splitting and the free charge carriers collection. Statistical information extracted from these simulations allows us to highlight the importance of polarization and to test the limits of the predictions given by the CT state splitting diagram. © 2017 Wiley Periodicals, Inc.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcc.24776 | DOI Listing |
EJNMMI Phys
January 2025
Department of Nuclear Medicine, Rambam Health Care Campus, P.O.B. 9602, 3109601, Haifa, Israel.
Background: A recently released digital solid-state positron emission tomography/x-ray CT (PET/CT) scanner with bismuth germanate (BGO) scintillators provides an artificial intelligence (AI) based system for automatic patient positioning. The efficacy of this digital-BGO system in patient placement at the isocenter and its impact on image quality and radiation exposure was evaluated.
Method: The digital-BGO PET/CT with AI-based auto-positioning was compared (χ, Mann-Whitney tests) to a solid-state lutetium-yttrium oxyorthosilicate (digital-LYSO) PET/CT with manual patient positioning (n = 432 and 343 studies each, respectively), with results split into groups before and after the date of a recalibration of the digital-BGO auto-positioning camera.
Commun Math Phys
January 2025
School of Mathematics and Statistics, Wuhan University, Wuhan, 430072 China.
We show that the communication cost of quantum broadcast channel simulation under free entanglement assistance between the sender and the receivers is asymptotically characterized by an efficiently computable single-letter formula in terms of the channel's multipartite mutual information. Our core contribution is a new one-shot achievability result for multipartite quantum state splitting via multipartite convex splitting. As part of this, we face a general instance of the quantum joint typicality problem with arbitrarily overlapping marginals.
View Article and Find Full Text PDFESC Heart Fail
January 2025
Division of Cardiology, Department of Medicine, Hospital of the University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA.
Aims: Right ventricular (RV) failure (RVF) after left ventricular assist device (LVAD) implant is an important cause of morbidity and mortality. Modern, data-driven approaches for defining and predicting RVF have been under-utilized.
Methods: Two hundred thirty-two patients were identified with a mean age of 55 years; 40 (17%) were women, 132 were (59%) Caucasian and 74 (32%) were Black.
Adv Mater
January 2025
School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang, 318000, P. R. China.
Efficient charge separation at the semiconductor/cocatalyst interface is crucial for high-performance photoelectrodes, as it directly influences the availability of surface charges for solar water oxidation. However, establishing strong molecular-level connections between these interfaces to achieve superior interfacial quality presents significant challenges. This study introduces an innovative electrochemical etching method that generates a high concentration of oxygen vacancy sites on BiVO surfaces (Ov-BiVO), enabling interactions with the oxygen-rich ligands of MIL-101.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003 China. Electronic address:
Two-dimensional metal-organic framework (2D MOF) materials have significant development prospects in the technology of urea-assisted water electrolysis for hydrogen production. However, the poor conductivity, low mass permeability, and stability have limited their development in electrocatalysis. Here, CoFe-BDC is synthesized using layered double hydroxides (LDH) as the template.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!