Magnetic resonance contrast agents with T-T dual mode contrast capability have attracted considerable interest because they offer complementary and synergistic diagnostic information, leading to high imaging sensitivity and accurate diagnosis. Here, we reported a facile strategy to construct albumin based nanoparticles loaded with hydrophobic gadolinium chelates by hydrophobic interaction for magnetic resonance imaging (MRI). We synthesized a glycyrrhetinic acid-containing Gd-DOTA derivative (GGD) and loaded GGD molecules into BSA nanoparticles to form GGD-BSA nanoparticles (GGD-BSA NPs). The large size and porous structure endow GGD-BSA NPs with geometrical confinement, which restricts the tumbling of GGD and the diffusion of surrounding water molecules. As a result, GGD-BSA NPs exhibit ultrahigh T and T relaxivities, which are approximately 8-fold higher than those of gadolinium-based clinical contrast agents at 0.5 T. Besides, due to the intrinsic properties of their components, GGD-BSA NPs show good biocompatibility in vitro and in vivo, which warrants their great potential in clinical translation. Furthermore, GGD-BSA NPs show remarkable sensitivity in noninvasive detection of liver tumors by self-confirmed T-T dual-mode contrast-enhanced MRI. All of these merits make GGD-BSA NPs a potential candidate for fruitful biomedical and preclinical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7nr01134b | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!