Benzothiophenes are heterocyclic constituents of important molecules relevant to society, including those with the potential to meet modern medical challenges. The construction of molecules would be vastly more efficient if carbon-hydrogen bonds, found in all organic molecules, can be directly converted into carbon-carbon bonds. In the case of elaborating benzothiophenes, functionalization of carbon-hydrogen bonds at carbon-number 3 (C3) is markedly more demanding than at C2 due to issues of regioselectivity (C3 versus C2), and the requirement of high temperatures, precious metals and the installation of superfluous directing groups. Herein, we demonstrate that synthetically unexplored but readily accessible benzothiophene S-oxides serve as novel precursors for C3-functionalized benzothiophenes. Employing an interrupted Pummerer reaction to capture and then deliver phenol and silane coupling partners, we have discovered a directing group-free method that delivers C3-arylated and -alkylated benzothiophenes with complete regioselectivity, under metal-free and mild conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5364387PMC
http://dx.doi.org/10.1038/ncomms14801DOI Listing

Publication Analysis

Top Keywords

carbon-hydrogen bonds
8
benzothiophenes
5
regioselective synthesis
4
synthesis alkylated
4
alkylated arylated
4
arylated benzothiophenes
4
benzothiophenes benzothiophenes
4
benzothiophenes heterocyclic
4
heterocyclic constituents
4
constituents molecules
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!