Carbon-fiber reinforced composites are ideal light-weighting candidates to replace traditional engineering materials. The mechanical performance of these composites results from a complex interplay of influences operating over several length and time scales. The mechanical performance may therefore be limited by many factors, one of which being the modest interfacial adhesion between the carbon fiber and the polymer. Chemical modification of the fiber, via surface grafting of molecules, is one possible strategy to enhance interactions across the fiber-polymer interface. To achieve systematic improvements in these modified materials, the ability to manipulate and monitor the molecular structure of the polymer interphase and the surface grafted molecules in the composite is essential, but challenging to accomplish from a purely experimental perspective. Alternatively, molecular simulations can bridge this knowledge gap by providing molecular-scale insights into the optimal design of these surface-grafted molecules to deliver superior mechanical properties. Here we use molecular dynamics simulations to predict the interfacial shear response of a typical epoxy/carbon-fiber composite for both pristine fiber and a range of surface graftings. We allow for the dynamic curing of the epoxy in the presence of the functionalized surface, including cross-link formation between the grafted molecules and the polymer matrix. Our predictions agree with recently reported experimental data for these systems and reveal the molecular-scale origins of the enhanced interfacial shear response arising from functionalization. In addition to the presence of interfacial covalent bonds, we find that the interfacial structural complexity, resulting from the presence of the grafted molecules, and a concomitant spatial homogeneity of the interphase polymer density are beneficial factors in conferring high interfacial shear stress. Our approach paves the way for computational screening processes to design, test, and rapidly identify viable surface modifications in silico, which would enable rapid systematic progress in optimizing the match between the carbon fiber treatment and the desired thermoset polymer matrix.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.6b16041 | DOI Listing |
Macromol Rapid Commun
January 2025
Department of Materials Science and Engineering, National University of Singapore (NUS), 9 Engineering Drive 1, Singapore, 117575, Singapore.
The modification of thermoplastic polymers is frequently impeded by the inherent contradiction between their toughness and strength. In this study, an effective strategy to significantly improve the mechanical properties of ductile polymers by simply adding a complimentary rigid polymer is introduced. This work uses a semi-crystalline polymer aliphatic polyketone (POK) as the matrix material and a small quantity of polymethyl methacrylate (PMMA) as the rigid polymer, through establishing molecular chain entanglements at the interface to produce POK/PMMA blends with exceptional mechanical property.
View Article and Find Full Text PDFiScience
January 2025
School of Civil Engineering and Architecture, Zhejiang University of Science & Technology, Hangzhou, P.R. China.
A possibility of unprecedented architecture may be opened up by combining both vertical and in-plane heterostructures. It is fascinating to discover that the interlayer stress transfer, interlayer binding energy, and interlayer shear stress of bi-layer Gr/hBN with CNTs heterostructures greatly increase (more than 2 times) with increase the numbers of CNTs and both saturate at the numbers of CNTs = 3, but it causes only 10.92% decrease in failure strain.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China.
Asphalt modified with treated waste tires has good environmental protection and application value. However, the nano-modification mechanism of crumb rubber (CR) with asphalt is still unclear. This research investigates the mechanism, aging, and interfacial interaction with the aggregate of CR modification asphalt (CRMA).
View Article and Find Full Text PDFElectromagn Biol Med
January 2025
Department of Applied Mathematics, University of Calcutta, Kolkata, India.
The current investigation explores tri-hybrid mediated blood flow through a ciliary annular model, designed to emulate an endoscopic environment. The human circulatory system, driven by the metachronal ciliary waves, is examined in this study to understand how ternary nanoparticles influence wave-like flow dynamics in the presence of interfacial nanolayers. We also analyze the effect of an induced magnetic field on Ag-Cu-/blood flow within the annulus, focusing on thermal radiation, heat sources, buoyancy forces and ciliary motion.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Soete Laboratory, Faculty of Engineering and Architecture, Ghent University, B-9052 Ghent, Belgium.
Epoxy resins have exhibited exceptional performance in engineering applications, particularly as a replacement for traditional mechanical joints in adhesive bonding. This study evaluates the suitability of two innovative adhesives, SikaPower-1511 and SikaPower-1548, in various graded configurations. The thermal curing behavior of the adhesives was analyzed using differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!