Aims And Objectives: Nowadays, the material that offers the best sealing characteristic in the field of endodontic treatment is the mineral trioxide aggregate (MTA), nevertheless, this material necessities an adhesive bonding agent to perfectly join to the dental surface. The aim of this study was to analyze using a scanning electron microscope (SEM) the possible microgap between the adhesive, MTA, and the dental surface.

Material And Methods: Fourteen extracted molars were divided into two groups - group A was prepared with MTA-component adhesive and group B was prepared with MTA and composite dual etching. The observations were carried out with a SEM Phenom G2 Pro mode S.E.I. JMP® software was used for statistical analysis, and a -test was used for evaluating the difference between the two groups.

Results: The gap of the areas at higher magnification (1000×) with a size greater than 5 microns in width and 20 microns in length were considered significant, and only group A recorded significant data.

Conclusions: The SEM analysis performed in the group A with interposition of adhesive and flow between the dental pulp chamber and MTA demonstrates the presence of a marginal gap of considerable amplitude in the all of the samples investigated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5343686PMC
http://dx.doi.org/10.4103/jispcd.JISPCD_521_16DOI Listing

Publication Analysis

Top Keywords

mta dental
8
scanning electron
8
electron microscope
8
group prepared
8
interface mta
4
dental
4
dental bonding
4
bonding agents
4
agents scanning
4
microscope evaluation
4

Similar Publications

Background: This study assessed stress distributions in simulated mandibular molars filled with various materials after the removal of fractured instruments from the apical thirds of the root canals.

Methods: Finite element models of the mesial and distal root canals were created, where fractured instruments were assumed to be removed using a staging platform established with a modified Gates-Glidden bur (Woodpecker, Guangxi, P.R.

View Article and Find Full Text PDF

Mechanical behavior of external root resorption cavities restored with different materials: a 3D-FEA study.

BMC Oral Health

January 2025

Faculty of Dentistry, Department of Endodontics, Ondokuz Mayis University, Samsun, Kurupelit, 55139, Turkey.

Background: The aim was to evaluate the stresses in teeth, with external root resorption (ERR) restored with different materials using finite element analysis (FEA).

Methods: In this study, a Micro-CT scan was conducted on a prepared maxillary central tooth. DICOM-compatible images obtained from the sections were converted into stereolithography format using Ctan software.

View Article and Find Full Text PDF

Aim: Calcium silicate-based cements have been widely used in dentistry mainly due to their physicochemical and biological properties. Commercially available materials use radiopacifiers containing metals (bismuth, tantalum, tungsten and/or zirconium). To investigate volumetric changes, in vivo biocompatibility and systemic migration from eight commercially available materials, including powder/liquid and 'ready-to-use' presentations.

View Article and Find Full Text PDF

Aim: Clinical and radiographic evaluation of SDF versus MTA as indirect pulp capping agents in deeply carious first permanent molars.

Methodology: This study was conducted on (30) first permanent molars indicated for indirect pulp capping (IPC) randomly allocated to either SDF or MTA groups (n = 15). The molars were finally restored with glass hybrid glass ionomer restoration.

View Article and Find Full Text PDF

Introduction: Vital pulp therapy (VPT) aims to preserve dental pulp after injury and has gained significant popularity due to advancements in materials and understanding of pulp biology. While bibliometric analyses are common in various fields, none have been conducted specifically for the 100 most-cited articles on VPT.

Materials And Methods: This bibliometric study analyzed the 100 most-cited VPT papers using data from Web of Science (WoS-CC), Scopus, and Google Scholar.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!