Multispectral images of flowers reveal the adaptive significance of using long-wavelength-sensitive receptors for edge detection in bees.

J Comp Physiol A Neuroethol Sens Neural Behav Physiol

Bee Sensory and Behavioural Ecology Lab, School of Biological and Chemical Sciences, Queen Mary University of London, London, UK.

Published: April 2017

Many pollinating insects acquire their entire nutrition from visiting flowers, and they must therefore be efficient both at detecting flowers and at recognizing familiar rewarding flower types. A crucial first step in recognition is the identification of edges and the segmentation of the visual field into areas that belong together. Honeybees and bumblebees acquire visual information through three types of photoreceptors; however, they only use a single receptor type-the one sensitive to longer wavelengths-for edge detection and movement detection. Here, we show that these long-wavelength receptors (peak sensitivity at ~544 nm, i.e., green) provide the most consistent signals in response to natural objects. Using our multispectral image database of flowering plants, we found that long-wavelength receptor responses had, depending on the specific scenario, up to four times higher signal-to-noise ratios than the short- and medium-wavelength receptors. The reliability of the long-wavelength receptors emerges from an intricate interaction between flower coloration and the bee's visual system. This finding highlights the adaptive significance of bees using only long-wavelength receptors to locate flowers among leaves, before using information provided by all three receptors to distinguish the rewarding flower species through trichromatic color vision.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5389994PMC
http://dx.doi.org/10.1007/s00359-017-1156-xDOI Listing

Publication Analysis

Top Keywords

adaptive significance
8
edge detection
8
rewarding flower
8
long-wavelength receptors
8
receptors
5
multispectral images
4
flowers
4
images flowers
4
flowers reveal
4
reveal adaptive
4

Similar Publications

Background: Cancer requires interdisciplinary intersectoral care. The Care Coordination Instrument (CCI) captures patients' perspectives on cancer care coordination. We aimed to translate, adapt, and validate the CCI for Germany (CCI German version).

View Article and Find Full Text PDF

Meta-analysis of MitraClip and PASCAL for transcatheter mitral edge-to-edge repair.

J Cardiothorac Surg

January 2025

Department of Internal Medicine II, Städtisches Klinikum Solingen, Solingen, Germany.

Background: Despite the promising results of both MitraClip and PASCAL systems for the treatment of mitral regurgitation (MR), there is limited data on the comparison of both systems regarding their safety and efficacy. We aim to compare both systems for MR.

Materials And Methods: Five databases were searched until October 2024.

View Article and Find Full Text PDF

Genome-wide identification and expression analysis of the WRKY gene family in Mikania micrantha.

BMC Genomics

January 2025

College of Biological Science and Food Engineering, Southwest Forestry University, Kunming, Yunnan Province, 650224, China.

Background: WRKY transcription factors (TFs) regulate plant responses to environmental stimuli and development, including flowering. Despite extensive research on different species, their role in the invasive plant Mikania micrantha remains to be explored. The aim of this study was to identify and analyze WRKY genes in M.

View Article and Find Full Text PDF

Most sports and leisure activities involve repetitive movements in the upper limb, which are typically linked to pain and discomfort in the neck and shoulder area. Movement variability is generally expressed by changes in movement parameters from one movement to another and is a time-dependent feature of repetitive activities. The purpose of this study was to examine the effect of repeated movement-induced fatigue on biomechanical coordination and variability in athletes with and without chronic shoulder pain (CSP).

View Article and Find Full Text PDF

Synechococcus is a significant primary producer in the oceans, coexisting with cyanophages, which are important agents of mortality. Bacterial resistance against phage infection is a topic of significant interest, yet little is known for ecologically relevant systems. Here we use exogenous gene expression and gene disruption to investigate mechanisms underlying intracellular resistance of marine Synechococcus WH5701 to the Syn9 cyanophage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!