The increasing development of different nanomaterials, such as silver nanoparticles (AgNPs), and their practical use in agriculture and biotechnology has created a strong need for elucidations of biological effects and risk assessments of AgNPs in plants. This study was aimed to investigate AgNPs effects on metal uptake and their biodistribution in pepper plants as well as on morphological parameters and hormonal responses of the isoprenoid cytokinin (CK) family. In addition, the comparison of effects silver form, nanoparticles vs. ionic, has also been examined. To the best of our knowledge, this is the first study describing CK responses in plants exposed to metallic NPs. The obtained results indicate that both AgNPs and Ag ions significantly increased total content of Ag in pepper tissues in a dose-dependent manner and affected on plant development by decreasing both plant height and biomass in a similar way. This study evidenced for the first time the role of CKs in abiotic stress in plants caused by AgNPs. The hormonal analysis, conducted by an ultra-high performance liquid chromatography-electrospray tandem mass spectrometry, revealed a significant increase in total CKs in the leaves and also highlighted the importance of cis-zeatin type CKs in plants treated with AgNPs. Our observations suggest potential risks of AgNPs on plant ecosystems upon their release into the environment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2017.03.015DOI Listing

Publication Analysis

Top Keywords

pepper plants
8
silver nanoparticles
8
agnps
7
plants
6
cytokinin response
4
response pepper
4
plants capsicum
4
capsicum annuum
4
annuum exposed
4
exposed silver
4

Similar Publications

Fine mapping of the Chilli veinal mottle virus resistance 4 (cvr4) gene in pepper (Capsicum annuum L.).

Theor Appl Genet

January 2025

Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.

The single recessive Chilli veinal mottle virus resistance locus, cvr4, was fine-mapped in pepper through bulked segregant RNA sequencing combined with gene silencing analysis. Chilli veinal mottle virus (ChiVMV) is a widespread pathogen affecting the production of peppers (Capsicum annuum L.) in Asia and Africa.

View Article and Find Full Text PDF

Two pepper subclass II SnRK2 genes positively regulate drought stress response, with differential responsiveness to abscisic acid.

Plant Physiol Biochem

January 2025

Department of Life Science (BK21 Program), Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, 06974, Seoul, Republic of Korea. Electronic address:

Sucrose nonfermenting-1-related protein kinase 2 (SnRK2) intricately modulates plant responses to abiotic stresses and abscisic acid (ABA) signaling. In pepper genome, five SnRK2 genes with sequence homology to CaSnRK2.6 showed distinct expression patterns across various pepper organs and in response to treatments with ABA, drought, mannitol, and salt.

View Article and Find Full Text PDF

This study explores the effects of varying exposure times of microelement fertilization on hydrochemical parameters, plant growth, and nutrient content in an aquaponic system cultivating L. (pepper) with ( L.).

View Article and Find Full Text PDF

Neuropathic pain is a complex and debilitating condition resulting from nerve damage, characterized by sensations such as burning, tingling, and shooting pain. It is often associated with conditions such as multiple sclerosis (MS), Guillain-Barré syndrome (GBS), and diabetic polyneuropathy. Conventional pain therapies frequently provide limited relief and are accompanied by significant side effects, emphasizing the need to explore alternative treatment options.

View Article and Find Full Text PDF

Antibacterial, Antifungal, Antiviral Activity, and Mechanisms of Action of Plant Polyphenols.

Microorganisms

December 2024

UPIZ "Educational and Research Laboratory"-MF, NBU, Department Natural Sciences, New Bulgarian University, Montevideo Blvd., 21, 1618 Sofia, Bulgaria.

This review describes the enhanced classification of polyphenols into flavonoids, lignans, phenolic acids, stilbenes, and tannins. Its focus is the natural sources of polyphenols and an in-depth discussion of their antibacterial, antifungal, and antiviral activity. Besides a broad literature overview, this paper contains authors' experimental data according to some daily consumed vegetables such as tomatoes, different varieties of onion, garlic, parsley, and cayenne pepper and the probable relation of these activities to polyphenols.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!