The azimuth of vertical leaves of Silphium terebinthinaceum profoundly influenced total daily irradiance as well as the proportion of direct versus diffuse light incident on the adaxial and abaxial leaf surface. These differences caused structural and physiological adjustments in leaves that affected photosynthetic performance. Leaves with the adaxial surface facing East received equal daily integrated irradiance on each surface, and these leaves had similar photosynthetic rates when irradiated on either the adaxial or abaxial surface. The adaxial surface of East-facing leaves was also the only surface to receive more direct than diffuse irradiance and this was the only leaf side which had a clearly defined columnar palisade layer. A potential cost of constructing East-facing leaves with symmetrical photosynthetic capcity was a 25% higher specific leaf mass and increased leaf thickness in comparison to asymmetrical South-facing leaves. The adaxial surface of South-facing leaves received approximately three times more daily integrated irradiance than the abaxial surface. When measured at saturating CO and irradiance, these leaves had 42% higher photosynthetic rates when irradiated on the adaxial surface than when irradiated on the abaxial surface. However, there was no difference in photosynthesis for these leaves when irradiated on either surface when measurements were made at ambient CO. Stomatal distribution (mean adaxial/abaxial stomatal density = 0.61) was unaffected by leaf orientation. Thus, the potential for high photosynthetic rates of adaxial palisade cells in South-facing leaves at ambient CO concentrations may have been constrained by stomatal limitations to gas exchange. The distribution of soluble protein and chlorophyll within leaves suggests that palisade and spongy mesophyll cells acclimated to their local light environment. The protein/chlorophyll ratio was high in the palisade layers and decreased in the spongy mesophyll cells, presumably corresponding to the attentuation of light as it penetrates leaves. Unlike some species, the chlorophyll a/b ratio and the degree of thylakoid stacking was uniform throughout the thickness of the leaf. It appears that sun-shade acclimation among cell layers of Silphium terebinthinaceum leaves is accomplished without adjustment to the chlorophyll a/b ratio or to thylakoid membrane structure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF00320994 | DOI Listing |
J Agric Food Chem
January 2025
CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences; Future Technology College, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China.
Many diseases and pests are fond of the backs of leaves, making wraparound deposition essential for enhancing agrochemical utilization and minimizing environmental hazards. We present a superhydrophobic surface decorated with fluorinated-SiO nanoparticles on the adaxial (front) side, improving sprayed droplet wraparound behaviors and achieving a 10-fold increase in abaxial (backside) deposition without using an electrostatic sprayer. Solid-liquid contact electrification boosts the positive charge-to-mass ratio of rebound spraying from 17 to 454 nC g, with the abaxial surface acquiring opposite electric charges at kilovolt-level voltages.
View Article and Find Full Text PDFMicrobiol Res
January 2025
ICAR-Indian Agricultural Research Institute, New Delhi, India. Electronic address:
Bacterial blight of pomegranate caused by Xanthomonas axonopodis pv. punicae poses significant challenges to sustainable cultivation, necessitating eco-friendly management strategies, and this study explores the role of the phylloplane microbiome in disease suppression through metabarcoding, traditional microbiology, and antibacterial screening of microbial candidates. Here, we mapped the phylloplane microbiome of pomegranate cultivar 'Bhagwa' during bacterial blight development using metabarcoding sequencing (2443,834 reads), traditional microbiological methods (nutrient-rich and minimal media), and scanning electron microscopy.
View Article and Find Full Text PDFMol Breed
January 2025
Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007 Guangxi China.
Unlabelled: Increasing planting density is one of the most important strategies for generating higher maize yields. Moderate leaf rolling decreases mutual shading of leaves and increases the photosynthesis of the population and hence increases the tolerance for high-density planting. Few genes that control leaf rolling in maize have been identified, however, and their applicability for breeding programs remains unclear.
View Article and Find Full Text PDFSci Rep
January 2025
School of Earth and Environmental Sciences, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.
Dienia is a small, pantropical genus of epidendroid Malaxideae orchids. The floral lip is upwardly directed and does not serve as a landing platform for pollinators. This role has been assumed by sepals and/or gynostemium or whole inflorescence.
View Article and Find Full Text PDFPlant Dis
December 2024
The Ohio State University, Plant Pathology, 2021 Coffey Road, Columbus, Ohio, United States, 43210;
, commonly known as stock, is a flowering plant species in the Brassicaceae popularly used as a cut flower due to its fragrant, long-lasting blooms. In September 2023, stock 'Iron White' plants displaying symptoms and signs of downy mildew were observed within a high tunnel in a cut flower farm in Franklin Co., OH.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!