The effects of fire and pocket gophers, Geomys bursarius, on the survivorship of Penstemon grandiflorus growing in an oak woodland in Minnesota were studied from 1986 to 1990. Plants growing in sparse vegetation experienced mortality rates twice that of plants growing in dense vegetation. This difference was due partly to pocket gophers whose earth moving activities reduce the density of vegetation and bury and kill individual Penstemon plants. Laboratory feeding trials showed that gophers readily eat Penstemon, particularly the fleshy roots. An experiment involving the removal of 25-75% of the root tissue in 90 plants showed that root loss significantly reduced survivorship, suggesting that gopher herbivory might also kill plants. When gophers were experimentally excluded, plants growing in sparse vegetation exhibited significantly lower mortality rates than those growing in dense vegetation. Plants in the smallest size class exhibited reduced survivorship following a late spring burn; however, overall patterns of survivorship of plants in burned areas did not differ markedly from those in the unburned areas. A longitudenal analysis of plants with different reproductive histories revealed no survivorship cost to reproduction. Mortality rates decreased with increasing plant size. Small plants were more likely to be killed by fire and by being buried under gopher mounds. Differences in underground energy reserves of small and large plants can account for most of the survivorship patterns observed in this study. The study shows that within openings of the oak woodland, fire and gophers reduce the survival of individual Penstemon plants. Nevertheless, since both gophers and fire also serve to perpetuate suitable habitat in the woodland, Penstemon is ultimately dependent on both for its long term persistence in the landscape.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00317397DOI Listing

Publication Analysis

Top Keywords

oak woodland
12
pocket gophers
12
plants
12
plants growing
12
mortality rates
12
survivorship penstemon
8
penstemon grandiflorus
8
effects fire
8
fire pocket
8
growing sparse
8

Similar Publications

Intraspecific Variation and Recent Loss of Ancient, Conserved Effector Genes in the Sudden Oak Death Pathogen .

Mol Plant Microbe Interact

January 2025

USDA ARS, Horticultural Crops Research Laboratory, 3420 NW Orchard Ave., Corvallis, Oregon, United States, 97330;

Members of the genus are responsible for many important diseases in agricultural and natural ecosystems. causes devastating diseases of oak, and tanoak stands in US forests and larch in the UK. The four evolutionary lineages involved express different virulence phenotypes on plant hosts, and characterization of gene content is foundational to understanding the basis for these differences.

View Article and Find Full Text PDF

The emergence of East Asian spring ephemerals and the unique ecosystem can be attributed primarily to vicariance, brought about by the Quaternary rifting of the Okinawa Trough, the formation of the East China Sea, and the isolation of the island chains of Ryukyu, Japan, and Taiwan from the Asian continent. The northern forests of Japan, dominated by and the associated , present a captivating display of spring-flowering ephemerals, including , , , and . Among these, is also considered part of the spring ephemerals.

View Article and Find Full Text PDF

In the Mediterranean basin, urban forests are widely recognized as essential landscape components, playing a key role in nature-based solutions by enhancing environmental quality and providing a range of ecosystem services. The selection of woody plant species for afforestation and reforestation should prioritize native species that align with the biogeographical and ecological characteristics of the planting sites. Among these, L.

View Article and Find Full Text PDF

Evidence of unintended introductions of species into native habitats has become increasingly prevalent in California. If not managed adequately, species can become devastating agricultural and forest plant pathogens. Additionally, California's natural areas, characterized by a Mediterranean climate and dominated by chaparral (evergreen, drought-tolerant shrubs) and oak woodlands, lack sufficient baseline knowledge on biology and ecology, hindering effective management efforts.

View Article and Find Full Text PDF

Drought stress during the plant's growing season is a serious constraint to plant establishment in arid and semiarid Mediterranean ecosystems. Plant growth promoting rhizobacteria (PGPR) as environmentally friendly and innovative management approach can be used to produce seedlings better adapted to these environments. We tested native PGPR strains isolated from drought-tolerant tree and shrub species originating from two climatically contrasting regions: hot-dry (Dehloran) and milder Mediterranean climate (Ilam).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!