Associations between enzyme genotypes and dark respiration in perennial ryegrass, Lolium perenne L.

Oecologia

Department of Environmental, Population, and Organismic, University of Colorado, Biology Campus Box 334, 80309, Boulder, CO, USA.

Published: December 1987

In this study, we determined whether relationships existed between dark respiration and genotype at five enzyme polymorphisms in perennial ryegrass, Lolium perenne L. Positive correlations were found between Q of dark respiration and genotype at the phosphoglucomutase (PGM) and 6-phosphogluconate dehydrogenase (6PGD) loci. Plants doubly homozygous for the common allele at these loci were found to have Q values 20% higher than those for double heterozygotes. In plants that were heat stressed for five consecutive days, Q was found to be negatively correlated with apparent vigor after stressing. Individuals homozygous for PGM and 6PGD (with higher Q values) exhibited more apparent damage following the stress than heterozygous individuals. Both PGM and 6PGD occupy positions in metabolism with regulatory potential. Although caution must be used in assigning causal relationships, the results suggest that specific forms of these enzymes are directly related to, or are correlated with, the determinants of respiratory efficiency in L. perenne.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00378926DOI Listing

Publication Analysis

Top Keywords

dark respiration
12
perennial ryegrass
8
ryegrass lolium
8
lolium perenne
8
respiration genotype
8
pgm 6pgd
8
associations enzyme
4
enzyme genotypes
4
genotypes dark
4
respiration perennial
4

Similar Publications

Xylem plasticity is important for trees to coordinate hydraulic efficiency and safety under changing soil water availability. However, the physiological and transcriptional regulations of cambium on xylem plasticity are not well understood. In this study, mulberry saplings of drought-resistant Wubu and drought-susceptible Zhongshen1 were subjected to moderate or severe drought stresses for 21 days and subsequently rewatered for 12 days.

View Article and Find Full Text PDF

Omics-driven onboarding of the carotenoid producing red yeast Xanthophyllomyces dendrorhous CBS 6938.

Appl Microbiol Biotechnol

December 2024

Life Sciences and Bioengineering Center, Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA.

Transcriptomics is a powerful approach for functional genomics and systems biology, yet it can also be used for genetic part discovery. Here, we derive constitutive and light-regulated promoters directly from transcriptomics data of the basidiomycete red yeast Xanthophyllomyces dendrorhous CBS 6938 (anamorph Phaffia rhodozyma) and use these promoters with other genetic elements to create a modular synthetic biology parts collection for this organism. X.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines how a certain type of microbe, when exposed to periods of darkness, can develop tolerance through co-cultivation with a heterotrophic microbe.
  • Results show that the dark-tolerant microbes became larger, had less chlorophyll, and shifted from photosynthesis to respiration, while the heterotroph adapted by using more organic acids instead of sugars.
  • The research highlights the enhanced metabolic exchange between the two microbes, indicating a strong coupling that helps them survive in low-light conditions.
View Article and Find Full Text PDF

Mechanical ventilation with high tidal volume (TV) or positive end-expiratory pressure (PEEP) may induce lung overinflation and increased pulmonary vascular resistance to flow. In 8 healthy mechanically ventilated pigs, we evaluated whether incident dark field (IDF) vital microscopy, applied through a small thoracotomy, could be used to evaluate changes in alveolar and pulmonary microvessel dimensions under different ventilator settings. High TV (12 ml/kg) increased alveolar diameters (from 99 ± 13 to 114 ± 6 μm, p < 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!