Sporocarps and sclerotia were collected for a one-year period in 23- and 180-year-old Abies amabilis stands in western Washington. All sporocarps were classified and chemically analyzed for N, P, K, Ca, Mg, Na and Fe. Lactarius sp. and Cortinarius sp. contributed the largest proportion of the total annual epigeous sporocarp production in both stands. Annual epigeous production was 34 kg/ha in the young stand and 27 kg/ha in the mature stand. Hypogeous sporocarp production increased from 1 kg ha yr to 380 kg ha yr with increasing stand age. High sclerotia biomass occurred in the young (2,300 kg/ha) and mature (3,000 kg/ha) stands. Peak sclerotia and epigeous sporocarp biomass in the young stand and epigeous and hypogeous sporocarp biomass in the mature stand coincided with the fall peak of mycorrhizal root biomass.In the young stand, sporocarps produced by decomposer fungi concentrated higher levels of Ca and Mn than those produced by mycorrhizal fungi. In the mature stand, sporocarps of decomposer fungi concentrated higher levels of N, P, Mn, Ca and Fe than sporocarps of mycorrhizal fungi. Epigeous and hypogeous sporocarps concentrated higher levels of N, P, and K than sclerotia or mycelium. The highest concentration of N (4.36%), P (0.76%), K (3.22%) and Na (1,678 ppm) occurred in epigeous sporocarps. Highest Mn (740 ppm) and Ca (20,600 ppm) concentrations occurred in mycelium, while highest Mg (1,929 ppm) concentrations were in hypogeous sporocarps and highest Fe (4,153 ppm) concentrations were in sclerotia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF00348033 | DOI Listing |
Int J Syst Evol Microbiol
January 2025
College of Life Science, Shenyang Normal University, Shenyang 110000, PR China.
A Gram-stain-negative, aerobic, motile, catalase-positive, oxidase-positive, short rod-shaped marine bacterium, designated as YIC-827, was isolated from Qingdao, Shandong Province, China. The results showed that cells of strain YIC-827 could grow optimally at 25-35 °C, pH 6.5-7.
View Article and Find Full Text PDFMicroorganisms
December 2024
Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, No. 2 Dongxiaofu, Haidian, Beijing 100091, China.
Wood-decay fungi, including white- and brown-decay fungi, are well known for their ability to degrade lignin and cellulose, respectively. The combined use of these fungi can increase the decomposition of woody substrates. Research has indicated that these fungi also exhibit inhibitory effects against , the causative agent of pine wilt disease (PWD).
View Article and Find Full Text PDFFront Cell Infect Microbiol
January 2025
Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI), Kolkata, India.
Amoebae, fascinatingly diverse protists, showcase a dual nature that positions them as both friends and foes in our world. These organisms, defined by their distinctive pseudopodia, span a spectrum from harmful to helpful. On the darker side, species like pose serious health risks, causing intestinal and liver diseases, while the infamous "brain-eating" leads to fatal primary amoebic meningoencephalitis (PAM), with a daunting 97% mortality rate.
View Article and Find Full Text PDFSci Rep
December 2024
United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan.
Brown rot fungi, the major decomposers in the boreal coniferous forests, cause a unique wood decay pattern but many aspects of brown rot decay mechanisms remain unclear. In this study, decayed wood samples were prepared by cultivation of the brown rot fungi Gloeophyllum trabeum and Coniophora puteana on Japanese coniferous wood of Cryptomeria japonica, and the cutting planes were prepared using broad ion beam (BIB) milling, which enables observation of intact wood, in addition to traditional microtome sections. Samples were observed using field-emission SEM revealing that areas inside the end walls of ray parenchyma cells were the first to be degraded.
View Article and Find Full Text PDFJ Biosci Bioeng
December 2024
Division of Engineering and Agriculture, Graduate School of Regional Development and Creativity, Utsunomiya University, 7-1-2 Yoto, Utsunomiya, Tochigi 321-8585, Japan.
Bacteria and fungi that are resistant to formaldehyde (FA) are expected to use biochemical processing to degrade FA in wastewater. Pseudomonas sp. No.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!