The hypothesis that the ciliary locomotion of rotifers is size limited and that it accounts of a significant portion of the energy budget was investigated using the genera Brachionus and Asplanchna. Speed of movement was measured among clones of different size in Brachionus, which shows little size variation through development. The same tests were done among individuals of different size within a clone of Asplanchna, which shows significant postembryonic size increase. In both cases, relative speed (body lengths per second) decreased significantly as body size increased. On this basis, and ecologically limiting size for ciliary locomotion is proposed. The actual cost of locomotion was measured for Brachionus; it is 62% of total metabolism, even though the theoretical (calculated) power requirements are well below 1% of total metabolism. Ciliary locomotion in the Rotifera thus appears to be extremely inefficient (low ratio of theoretical to actual power requirements). This hypothesis is supported indirectly by the sensitivity of speed to total metabolic rate in Brachionus: both plateau over the temperature range 20-32°C and decline in parallel outside this range. Unexpectedly high actual cost of locomotion is proposed as an important disadvantage of the Rotifera, partly offsetting the advantages accruing to them from small body size.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF00379624 | DOI Listing |
Adv Sci (Weinh)
December 2024
Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600, Yishan Road, Shanghai, 200233, P. R. China.
Rapid thrombolysis is very important to reduce complications caused by vascular blockage. A promising approach for improving thrombolysis efficiency is utilizing the permanent magnetically actuated locomotion of nanorobots. However, the thrombolytic drug transportation efficiency is challenged by in-plane rotating locomotion and the insufficient drug penetration limits further improvement of thrombolysis.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA.
This study investigates the control of ciliary beat patterns during ammonium chemotaxis in the model ciliate microalga Chlamydomonas reinhardtii. Screening the chemotaxis response of mutant strains with ciliary defects revealed that a strain lacking CAV2, the alpha subunit of the voltage-gated calcium channel, is deficient in ammonium chemotaxis. CAV2 regulates the switching of the ciliary beat pattern from the asymmetric to the symmetric waveform.
View Article and Find Full Text PDFBiol Open
November 2024
Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland.
Joubert Syndrome (JBTS) is a neurodevelopmental ciliopathy defined by a highly specific midbrain-hindbrain malformation, variably associated with additional neurological features. JBTS displays prominent genetic heterogeneity with >40 causative genes that encode proteins localising to the primary cilium, a sensory organelle that is essential for transduction of signalling pathways during neurodevelopment, among other vital functions. JBTS proteins localise to distinct ciliary subcompartments, suggesting diverse functions in cilium biology.
View Article and Find Full Text PDFElife
September 2024
Living Systems Institute, University of Exeter, Exeter, United Kingdom.
Hydrostatic pressure is a dominant environmental cue for vertically migrating marine organisms but the physiological mechanisms of responding to pressure changes remain unclear. Here, we uncovered the cellular and circuit bases of a barokinetic response in the planktonic larva of the marine annelid . Increased pressure induced a rapid, graded, and adapting upward swimming response due to the faster beating of cilia in the head multiciliary band.
View Article and Find Full Text PDFCell Death Dis
September 2024
Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.
Colorectal cancer (CRC) is the second leading cause of cancer-related mortality worldwide. Although CRC patients' survival is improved with surgical resection and immunotherapy, metastasis and recurrence remain major problems leading to poor prognosis. Therefore, exploring pathogenesis and identifying specific biomarkers are crucial for CRC early diagnosis and targeted therapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!