The Eurasian watermilfoil (Myriophyllum spicatum L.) has partially replaced wild celery (Vallisneria americana Michx.) as a community dominant in the littoral zones of lakes of Madison, Wisconsin. The two species have very different growth forms, with that of M. spicatum corresponding more closely to the optimal growth form simulated by the macrophyte production model WEED. The objective of this research was to investigate the mechanisms by which Vallisneria could compensate for its nonoptimal growth form and coexist with Myriophyllum.A quantification of midsummer growth form for the two species at a rooting depth of 80-90 cm showed that M. spicatum had 68% of its shoot biomass within 30 cm of the surface, whereas V. americana had 62% of its leaf biomass within 30 cm of the bottom. Vallisneria had a light extinction coefficient ranging from 0.013 to 0.019 m·g, much higher than the value (ca. 0.006 m·g) for M. spicatum. This indicates less effective penetration of light to lower leaves of V. americana. Half-saturation constants describing the light-dependence of carbon uptake in "shade" and "sun" tissues ranged from 60-197 microeinsteins·m·s for V. americana, and 164-365 μeinsteins·m·s for M. spicatum. The optimum temperature for photosynthesis was 33.6°C for M. spicatum and 32.6°C for V. americana, but Myriophyllum was nearly twice as effective at carbon uptake at 10°C. Integration of all of the above features with WEED showed that, for midsummer conditions, V. americana more than compensated for apparently disadvantageous morphological features by its greater physiological adaptability to low light regimes. Coupled with the temperature-dependence of photosynthesis, it appears that V. americana is favored by midsummer conditions, whereas M. spicatum is at an advantage at other times.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF00345324 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!