Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Environmental heterogeneity has been intensively studied, but little is known about relationships between habitat patchiness and soil processes. The aim of this study was to investigate (1) the impact of patchiness of the litter layer on the decomposer community and litter decomposition rate, and (2) whether the impact of soil fauna on the rates of processes differs in relation to patchiness. An experiment was carried out in microcosms with coniferous forest humus and four kinds of litter with different C:N ratios or stages of decomposition, either separately (i.e. in patches) or mixed with each other. Microarthropod species diversity was better maintained in the patchy systems. In the absence of soil fauna, community respiration was higher in the patchy microcosms, but in the presence of fauna the opposite pattern was observed. The contribution of soil fauna to the rate of decomposition was clearly greater in the mixed litter systems. Based on the results, a hypothesis is presented that in the patchy litter layer the soil fungi can create connections between different materials located some centimeters apart, thus enhancing decomposition, while in the mixed litter the scale of millimeters is more appropriate for the soil fauna, known to accelerate the process rates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s004420050602 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!