Wing membranes of laboratory and field-reared monarch butterflies (Danaus plexippus) were analyzed for their stable-hydrogen (δD) and carbon (δC) isotope ratios to determine whether this technique could be used to identify their natal origins. We hypothesized that the hydrogen isotopic composition of monarch butterfly wing keratin would reflect the hydrogen isotope patterns of rainfall in areas of natal origin where wings were formed. Monarchs were reared in the laboratory on milkweed plants (Asclepias sp.) grown with water of known deuterium content, and, with the assistance of volunteers, on native milkweeds throughout eastern North America. The results show that the stable hydrogen isotopic composition of monarch butterflies is highly correlated with the isotopic composition of the milkweed host plants, which in turn corresponds closely with the long-term geographic patterns of deuterium in rainfall. Stable-carbon isotope values in milkweed host plants were similarly correlated with those values in monarch butterflies and showed a general pattern of enrichment along a southwest to northeast gradient bisecting the Great Lakes. These findings indicate that natal origins of migratory and wintering monarchs in Mexico can be inferred from the combined δD and δC isotopic signatures in their wings. This relationship establishes that analysis of hydrogen and carbon isotopes can be used to answer questions concerning the biology of migratory monarch butterflies and provides a new approach to tracking similar migratory movements of other organisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s004420050872 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!