Controlled experiments of habitat fragmentation: a simple computer simulation and a test using small mammals.

Oecologia

Department of Environmental Sciences and Blandy Experimental Farm, University of Virginia, P.O. Box 175, 22620, Boyce, VA, USA.

Published: October 1996

Habitat fragmentation involves a reduction in the effective area available to a population and the imposition of hard patch edges. Studies seeking to measure effects of habitat fragmentation have compared populations in fragments of different size to estimate and area effect but few have examined the effect of converting open populations to closed ones (an effect of edges). To do so requires a shift in spatial scope-from comparison of individual fragments to that of fragmented versus unfragmented landscapes. Here we note that large-scale, "controlled" studies of habitat fragmentation have rarely been performed and are needed. In making our case we develop a simple computer simulation model based on how individual animals with home ranges are affected by the imposition of habitat edges, and use it to predict population-level responses to habitat fragmentation. We then compare predictions of the model with results from a field experiment on Peromyscus and Microtus. Our model treats the case where home ranges/territories fall entirely within or partially overlap with that of sample areas in continuous landscapes, but are restricted to areas within habitat fragments in impacted landscapes. Results of the simulations demonstrate that the imposition of hard edges can produce different population abundances for similar-sized areas in continuous and fragmented landscapes. This edge effect is disproportionately greater in small than large fragments and for species with larger than smaller home ranges. These predictions were generally supported by our field experiment. We argue that large-scale studies of habitat fragmentation are sorely needed, and that control-experiment contrasts of fragmented and unfragmented microlandscapes provide a logical starting point.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00333230DOI Listing

Publication Analysis

Top Keywords

habitat fragmentation
24
habitat
8
simple computer
8
computer simulation
8
imposition hard
8
studies habitat
8
field experiment
8
areas continuous
8
fragmentation
6
controlled experiments
4

Similar Publications

The effects of microplastic (MP) accumulation in freshwaters on organisms and ecosystem functions are poorly understood, as are the roles of MP particle properties in regulating these effects. In freshwater microcosms, we quantified variation in microbial communities and ecosystem functions and compared effects of MP concentration (0, 1000, 50000 particles/kg), shape (sphere, fragment, fibre), and polymer (polyethylene, polyethylene terephthalate, polypropylene, polystyrene) with those of a model invertebrate consumer (Chironomus riparius). We detected multiple effects of specific MP properties, especially associated with MP fragments and fibres, and the polymer polypropylene.

View Article and Find Full Text PDF

Assessing the distribution pattern of Saussurea medusa under climate change using an optimized MaxEnt model in Qinghai-Xizang Plateau.

Environ Monit Assess

January 2025

Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China.

Saussurea medusa is a rare alpine plant with significant medicinal value. To better understand the changes in its habitat in the context of climate change, this study used an optimized MaxEnt model to predict the current and future habitat of S. medusa under four shared socioeconomic pathways (SSPs) across three time periods (current, mid-century, and end-century) based on three climate system models.

View Article and Find Full Text PDF

The escalating demand for sustainable materials has been fueling the rapid proliferation of the biopolymer market. Biodegradable polymers within natural habitats predominantly undergo degradation mediated by microorganisms. These microorganisms secrete enzymes that cleave long-chain polymers into smaller fragments for metabolic assimilation.

View Article and Find Full Text PDF

Predicting the Global Distribution of L. Under Climate Change Based on Optimized MaxEnt Modeling.

Plants (Basel)

December 2024

Shaanxi Key Laboratory of Ecological Restoration in Northern Shaanxi Mining Area, College of Life Science, Yulin University, Yulin 719000, China.

The genus of L. are Tertiary-relict desert sand-fixing plants, which are an important forage and agricultural product, as well as an important source of medicinal and woody vegetable oil. In order to provide a theoretical basis for better protection and utilization of species in the L.

View Article and Find Full Text PDF

Unveiling the Genetic Diversity and Demographic History of in Sierra Leone Using Genotyping-By-Sequencing.

Plants (Basel)

December 2024

Sustainable Perennial Crops Laboratory, United States Department of Agriculture, Agriculture Research Service, Beltsville, MD 2005, USA.

is a rare Coffea species boasting a flavor profile comparable to Arabica coffee () and has a good adaptability to lowland tropical climates. This species faces increasing threats from climate change, deforestation, and habitat fragmentation in its West African homeland. Using 1037 novel SNP markers derived from Genotyping-by-Sequencing (GBS), we revealed the presence of three distinct natural populations (mean Fst = 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!