Because the world's forests play a major role in regulating nutrient and carbon cycles, there is much interest in estimating their biomass. Estimates of aboveground biomass based on well-established methods are relatively abundant; estimates of root biomass based on standard methods are much less common. The goal of this work was to determine if a reliable method to estimate root biomass density for forests could be developed based on existing data from the literature. The forestry literature containing root biomass measurements was reviewed and summarized and relationships between both root biomass density (Mg ha) and root:shoot ratios (R/S) as dependent variables and various edaphic and climatic independent variables, singly and in combination, were statistically tested. None of the tested independent variables of aboveground biomass density, latitude, temperature, precipitation, temperature:precipitation ratios, tree type, soil texture, and age had important explanatory value for R/S. However, linear regression analysis showed that aboveground biomass density, age, and latitudinal category were the most important predictors of root biomass density, and together explained 84% of the variation. A comparison of root biomass density estimates based on our equations with those based on use of generalized R/S ratios for forests in the United States indicated that our method tended to produce estimates that were about 20% higher.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s004420050201 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!