Defoliation effects on isoprene emission from Populus deltoides.

Oecologia

Department of Ecology and Evolution, State University of New York, Stony Brook, NY 11794-5245, USA, , , , , , US.

Published: March 1999

Isoprene emission from plants is one of the principal ways in which plant processes alter atmospheric chemistry. Despite the importance of this process, few long-term controls over basal emission rates have been identified. Stress-induced changes in carbon allocation within the entire plant, such as those produced by defoliation, have not been examined as potential mechanisms that may control isoprene production and emission. Eastern cottonwood (Populus deltoides) saplings were partially defoliated and physiological and growth responses were measured from undamaged and damaged leaves 7 days following damage. Defoliation reduced isoprene emission from undamaged and damaged leaves on partially defoliated plants. Photosynthetic rates and leaf carbon and nitrogen pools were unaffected by damage. Photosynthetic rate and isoprene emission were highly correlated in undamaged leaves on undamaged plants and damaged leaves on partially defoliated plants. There was no correlation between photosynthetic rate and isoprene emission in undamaged leaves on partially defoliated plants. Isoprene emission was also highly correlated with the number of source leaves on the apical shoot in damage treatments. Increased carbon export from source leaves in response to defoliation may have depleted the amount of carbon available for isoprene synthesis, decreasing isoprene emission. These results suggest that while isoprene emission is controlled at the leaf level in undamaged plants, emission from leaves on damaged plants is controlled by whole-branch allocation patterns.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s004420050734DOI Listing

Publication Analysis

Top Keywords

isoprene emission
32
partially defoliated
16
damaged leaves
12
leaves partially
12
defoliated plants
12
emission
11
isoprene
10
populus deltoides
8
undamaged damaged
8
leaves
8

Similar Publications

As an essential component of urban natural sources, isoprene has strong interactions and synergies with anthropogenic precursors (volatile organic compounds and nitrogen oxides) of ozone (O), influencing O formation in urban areas. However, the variability of these effects under different anthropogenic emission scenarios has not been fully understood. This study, utilizing observational data from Dezhou (a medium-sized city in the center of North China Plain) from May to September in both 2019 and 2020, and incorporating four future scenarios based on Shared Socioeconomic Pathways (SSP1-2.

View Article and Find Full Text PDF

The development of probes for the efficient detection of volatile organic compounds is crucial for both human health protection and environmental monitoring. In this study, we successfully synthesized a ratiometric fluorescent sensing material [Eu-UiO-67 (1:1)], featuring dual-emission fluorescence peaks via a one-pot method. This material demonstrated exceptional ratiometric fluorescence recognition properties for liquid styrene and isoprene, achieving low limit of detections (LODs) of 6.

View Article and Find Full Text PDF

The Amazon forest is the largest source of isoprene emissions, and the seasonal pattern of leaf-out phenology in this forest has been indicated as an important driver of seasonal variation in emissions. Still, it is unclear how emissions vary between different leaf phenological types in this forest. To evaluate the influence of leaf phenological type over isoprene emissions, we measured leaf-level isoprene emission capacity and leaf functional traits for 175 trees from 124 species of angiosperms distributed among brevideciduous and evergreen trees in a central Amazon forest.

View Article and Find Full Text PDF

Isoprene serves an important part in plant defense against biotic and abiotic stresses, while also exerting a crucial influence on atmospheric photochemical processes and global climate change. The regional climate-chemistry-ecosystem model (RegCM-Chem-YIBs) was employed in the following study to estimate the biogenic isoprene emissions (BISP) in China during 2018-2020. The model explored the relative contributions of various stress factors such as drought, carbon dioxide (CO), and surface ozone (O) to isoprene emissions.

View Article and Find Full Text PDF

[This corrects the article DOI: 10.3389/fpls.2023.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!